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3a Definitions and a simple fact

In Sect. 1a, for given a1, a2, · · · ∈ R we construct [b1, c1] ⊃ [b2, c2] ⊃ . . .
such that an /∈ [bn, cn]. On stage n we do not need to know an+1, . . . ; we
need only an. Thus, the same idea leads to a game: Alice chooses a1 ∈ R;
then Bob chooses [b1, c1] 63 a1; then Alice chooses a2 ∈ R; then Bob chooses
[b2, c2] ⊂ [b1, c1], [b2, c2] 63 a2; and so on. Similarly to Sect. 1a we wonder,
what happens if Alice may choose a larger set (not only a singleton) at each
step? Still, Bob is able to play provided that

A0 is not dense in R , and

An+1 is not dense in [bn, cn] for n = 0, 1, 2, . . .

where An is the set chosen by Alice on step n. And still, Bob wins; it means,
he gets in the intersection a point outside A1 ∪ A2 ∪ . . .

The Banach-Mazur game1 2 is somewhat different. A set A ⊂ R is given.
Alice chooses an interval U1. Then Bob chooses a subinterval V1 ⊂ U1. Then
Alice chooses U2 ⊂ V1; and so on. Finally, let the intersection of all these
intervals be a singleton {x}; then Alice wins if x ∈ A while Bob wins if x /∈ A.
Denoting by B the complement of A we may say: Bob wins if x ∈ B.

Some questions remain:

∗ what happens if the intersection is not a singleton?

∗ are the intervals open, close, or arbitrary? and what about sets more
general than intervals?

∗ do Alice and Bob remember the past moves?

It appears that the answers are not important. The important question is,
whether A is meager, comeager or neither.

For now we assume that
1The first infinite positional game of perfect information to be studied.
2In the literature it is usual to assign the first move to Bob and seek a winning strategy

for Alice.
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∗ all intervals must be open and nonempty;

∗ Bob forgets the past moves, and moreover, he forgets the number of
these moves.

In this case, by definition,

∗ the strategy for Bob is a map σ from the set of such intervals to itself,
satisfying σ(U) ⊂ U for all U ;

∗ a run of the game is (Un, Vn)∞n=1 such that Un+1 ⊂ Vn ⊂ Un for n =
1, 2, . . .

∗ the run is compatible with the strategy if Vn = σ(Un) for n = 1, 2, . . . ;

∗ a strategy is winning for Bob if Bob wins all runs compatible with the
strategy;

a question remains, when Bob wins a run. Note that Alice need not follow
any strategy (for now).

We intend to prove that Bob wins whenever A is meager. In order to make
this claim stronger we also assume that Bob is responsible for the singleton
in the intersection. That is, by definition,

∗ Bob wins the run if ∩nUn = ∩nVn = {x} for some x ∈ B
(and only in this case). Of course, the equality ∩nUn = ∩nVn holds for every
run.

3a1 Proposition. If B is comeager then Bob has a winning strategy.

Note that Bob wins even if he is memoryless and responsible for the
singleton (the worst case). The more so he wins in all more favorable cases.

It is simpler to prove it for a bit more favorable case: Bob knows n (the
number of the move). In this case a strategy is (σn)n and compatibility is
Vn = σn(Un). We choose σn such that

Cl(σn(U)) ⊂ U ,

|σn(U)| ≤ 2−n ,

σn(U) ∩ An = ∅ ;

here | . . . | is the length of the interval, and An are nowhere dense sets such
that A ⊂ ∪nAn. Clearly, such σn exist and are a winning strategy.

Now, the worst case.

Proof of 3a1. We choose σ such that

Cl(σ(U)) ⊂ U ,

|σ(U)| ≤ 1

2
min(1, |U |) ,

σ(U) ∩ An = ∅ whenever |U | ≤ 2−n .
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This is evidently possible, and implies for every compatible run (Un, Vn)n

|Vn| ≤ 2−n for n = 1, 2, . . . ;

|Un| ≤ 2−(n−1) for n = 2, 3, . . . ;

Vn ∩ An−1 = ∅ for n = 2, 3, . . . ;

it follows that Bob wins the run.

Why just intervals on R? We may consider rather general subsets of a
metric space.

Assume that (X, ρ) is a metric space and MA,MB (“possible moves of
Alice”, “of Bob”) are given sets of subsets of X satisfying

∀U ∈MA ∃V ∈MB V ⊂ U ,(3a2)

∀V ∈MB ∃U ∈MA U ⊂ V .(3a3)

(In particular, both may consist of all nonempty open sets in X; this is the
most usual choice.) A run of the game is, by definition, (Un, Vn)n such that
Un ∈MA, Vn ∈MB and Un+1 ⊂ Vn ⊂ Un for n = 1, 2, . . .

We do not want to restrict ourselves to compact spaces (indeed, R is not
compact) and use completeness instead.

3a4 Exercise. The following conditions on a metric space (X, ρ) are equiv-
alent:

(a) Every Cauchy sequence (xn)n in X converges; that is,

inf
n

sup
k
ρ(xn, xn+k) = 0 =⇒ ∃x ρ(xn, x)→ 0 .

(b) If closed sets Fn ⊂ X satisfy F1 ⊃ F2 ⊃ . . . and diamFn → 0 then
∩nFn 6= ∅; here diamFn = supx,y∈Fn ρ(x, y).

(c) X is closed in every including metric space; that is, if (Y, ρ1) is a
metric space such that X ⊂ Y and ρ(x1, x2) = ρ1(x1, x2) for all x1, x2 ∈ X
then X is closed in Y .
Prove it.

3a5 Definition. (a) A metric space (X, ρ) is complete if it satisfies the
equivalent conditions 3a4(a,b,c).

(b) A metrizable space (X,R) is completely metrizable if (X, ρ) is com-
plete for some ρ ∈ R.

(c) A metrizable space is separable if some sequence is dense.
(d) A metrizable space (X,R) is Polish1 if it is completely metrizable and

separable.

1Sierpiński, Kuratowki, Tarski. . .
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However, “Polish metric space” is ambiguous; for some authors it is “sepa-
rable complete metric space”, while others mean completeness in some equiv-
alent metric.

3a6 Exercise. A metrizable space is separable if and only if there exists
a countable base, that is, a sequence (Un)n of open sets such that U =
∪n:Un⊂UUn for every open set U .

Prove it.

3a7 Exercise. A subspace of a separable space is separable.
Prove it.

3a8 Exercise. (a) A compact space is separable.
(b) A compact space is complete in every compatible metric.

Prove it.

Thus, a compact space is Polish.
The space [0, 1] is compact; (0, 1) is not compact, and not complete, but

still Polish (being homeomorphic to R).

3a9 Proposition. Let X be completely metrizable, MA satisfy

(a) ∀U ∈MA Int(U) 6= ∅

and MB satisfy

(b) for every nonempty open G ⊂ X , ∃V ∈MB V ⊂ G .

If B is comeager then Bob has a winning strategy.

Similarly to 3a1, the worst case is meant. Of course, (3a2), (3a3) are still
assumed. It follows from (3a3) and 3a9(a) that ∀V ∈MB Int(V ) 6= ∅. Still,
MA and MB may consist of all nonempty open sets.

3a10 Exercise. Prove 3a9.

3a11 Theorem (Baire). LetX be a completely metrizable space. IfA1, A2, · · · ⊂
X are nowhere dense then Int(∪nAn) = ∅.

Note that 1d3 and 1d6 are special cases of 3a11.

3a12 Exercise. (a) Deduce 3a11 from 3a9.
(b) Give another proof of 3a11, simple and free of games.
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3b The converse holds but is not simple

Now we want to prove the converse to 3a1, 3a9: if B is not comeager then
Bob has no winning strategy. This is easy to see if A is comeager, since then
Alice has a winning strategy. The question is, what happens if A and B are
neither meager nor comeager.

We assume that Bob has a winning strategy and want to prove that B is
somehow large (ultimately, comeager). For now we deal with open intervals
in R. We know that B is not meager, therefore uncountable. Can we prove
(at least) that B is of cardinality continuum?

Consider two disjoint intervals; denote them U1(0), U1(1). Alice may
choose any one of them, U1 = U1(b1), b1 ∈ {0, 1}. Bob chooses V1 = V1(b1) ⊂
U1(b1) according to his winning strategy. Consider two disjoint intervals of
both:

U2(0, 0), U2(0, 1) ⊂ V1(0) , U2(1, 0), U2(1, 1) ⊂ V1(1) .

Alice may choose any one of them, U2 = U2(b1, b2), b2 ∈ {0, 1}. And so on.
In all cases Bob is guaranteed to win; it means that⋂

n

Un(b1, . . . , bn) = {x(b1, b2, . . . )} , x(b1, b2, . . . ) ∈ B

for all (bn)n ∈ {0, 1}∞. These points are pairwise distinct (since the intervals
are disjoint. . . ); thus, B is of cardinality continuum.

It is easy to see that all these x(b) for b ∈ {0, 1}∞ are a set C homeo-
morphic to the Cantor set. Yes, it is of cardinality continuum, but not at
all comeager; it is nowhere dense. Can we improve the trick? Let us try to
understand it better.

We consider a tree T2, a binary1 subtree of the much larger tree
T of all legal positions of the game; these are (U1, V1, . . . , Un, Vn)
and (U1, V1, . . . , Un, Vn, Un+1) in general, but we restrict ourselves to
Uk(b1, . . . , bk), Vk(b1, . . . , bk). Infinite branches of T2 are the considered runs
(Un(b1, . . . , bn), Vn(b1, . . . , bn))n = (Un(b[1 : n]), Vn(b[1 : n]))n, b ∈ {0, 1}∞.
We note that ⋂

n

Un(b[1 : n]) =
⋂
n

Vn(b[1 : n]) = {x(b)} ,

C =
⋃
b

⋂
n

Vn(b[1 : n]) ,⋃
b

⋂
n

Vn(b[1 : n]) =
⋂
n

⋃
b

Vn(b[1 : n])︸ ︷︷ ︸
Gn(T2)

.(3b1)

1Not quite binary; Alice has a binary choice on each move, but Bob follows a strategy.
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Thus, C is the intersection of a sequence of open sets Gn(T2). These sets are
not dense; what a pity. . .

Can we use a larger subtree? The whole tree T does not fit, since Bob
follows a strategy σ. Consider the corresponding subtree Tσ. The set

Gn(Tσ) =
⋃

(U1,V1,...,Un,Vn)∈Tσ

Vn

is dense (just because Vn ⊂ U1 and U1 is arbitrary). Nice; but what about
(3b1)?

If a point x belongs to Gn(Tσ) for all n, it means that x ∈ Vn for some
branch, for each n; but the branch may depend on n, this is the problem!1

Why does (3b1) hold for T2? Since the intervals are disjoint. . . Namely,
for every n the 2n sets Un(b1, . . . , bn) are pairwise disjoint; and therefore the
sets Vn(b1, . . . , bn) are pairwise disjoint, too.

We need disjointedness; but we do not really need so much disjointedness!
It would be enough to have the disjointedness for infinitely many n (but not
all n). Likewise, it would be enough to have the disjointedness for Vn (but
not Un). The latter appears to be the key idea!

Now we are in position to prove that B is comeager if Bob has a winning
strategy. In order to make this claim stronger we consider the case best for
Bob: he remembers the past moves, and Alice is responsible for the singleton.
That is, we define:

∗ a strategy for Bob is a sequence (σn)n of maps σn from legal positions
(U1, V1, . . . , Un) to MB;

∗ (U1, V1, . . . , Un) is a legal position if U1, . . . , Un ∈ MA, V1, . . . , Vn−1 ∈
MB and U1 ⊃ V1 ⊃ · · · ⊃ Un−1 ⊃ Vn−1 ⊃ Un;

∗ a run is compatible with the strategy if Vn = σn(U1, V1, . . . , Un) for
n = 1, 2, . . . ;

∗ Alice wins the run if ∩nUn = ∩nVn = {x} for some x ∈ A; otherwise
Bob wins the run.

3b2 Proposition. Let X be Polish, MB satisfy

(a) ∀V ∈MB Int(V ) 6= ∅

and MA satisfy

(b) for every nonempty open G ⊂ X , ∃U ∈MA U ⊂ G .

If B is not comeager then Bob has no winning strategy.

1König’s lemma does not help, since Alice has infinitely many possible moves. . .
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Of course, (3a2), (3a3) are still assumed (and therefore 3b2(a) is equiva-
lent to 3a9(a)).

A weak basis for a topological space is a set of nonempty open sets such
that every nonempty open set contains (at least) one of them.1

Given a nonempty open G ⊂ X and n, we introduce

Wn(G) = {Intσn(U1, V1, . . . , Un) : Un ∈MA,Cl(Un) ⊂ G, diam(Un) ≤ 2−n} .

3b3 Exercise. Prove that Wn(G) is a weak basis for G.

3b4 Exercise. Let W be a weak basis for a separable metrizable space X.
Then there exists a finite or infinite sequence (wn)n of wn ∈ W such that all
wn are pairwise disjoint, and ∪nwn is dense.

Prove it.

Usually it is an infinite sequence; for simplicity I consider only this case.
The finite case is simpler, but complicates notations.

3b5 Corollary. Given a nonempty open G ⊂ X and n, we get Uk ∈ MA

such that Cl(Uk) ⊂ G, diamUk ≤ 2−n, sets Int σn(U1), Intσn(U2), . . . are
pairwise disjoint, and their union is dense in G.

3b6 Exercise. Let G, Gk and Gk,l be open sets (k, l = 1, 2, . . . ) such that
∪kGk is dense in G and for each k, ∪lGk,l is dense in Gk. Then ∪k,lGk,l is
dense in G.

Prove it.

Proof of Prop. 3b2. Assume the contrary: Bob has a winning strategy σ =
(σn)n. Applying 3b5 to G = X and n = 1 we get Uk ∈ MA such that
diamUk ≤ 1/2, ∪k IntVk is dense in X, and they are disjoint; here Vk =
σ1(Uk).

Similarly, for each k we apply 3b5 to G = IntVk and n = 2 and get
Uk,l ∈ MA such that Cl(Uk,l) ⊂ IntVk, diamUk,l ≤ 1/4, ∪l IntVk,l is dense
in IntVk, and they are disjoint; here Vk,l = σ2(Uk,l). By 3b6, ]k,l IntVk,l is
dense in X.

Continuing this way we get Un(a1, . . . , an) and Vn(a1, . . . , an) such that
Vn(a1, . . . , an) = σn(Un(a1, . . . , an)), ClUn+1(a1, . . . , an+1) ⊂ IntVn(a1, . . . , an),
diamUn(a1, . . . , an) ≤ 2−n, IntVn+1(a1, . . . , an, a

′)∩IntVn+1(a1, . . . , an, a
′′) =

∅ for a′ 6= a′′, and ∪a1,...,an IntVn(a1, . . . , an) is dense in X. It follows that(
Un(a[1 : n]), Vn(a[1 : n])

)
n is a run compatible with σ for every a ∈

{1, 2, . . . }∞, and ∩nUn(a[1 : n]) = ∩nVn(a[1 : n]) = {x} for some x ∈ X.

1Sect. 8.G in: A.S. Kechris, “Classical descriptive set theory”, Springer 1995. Probably
not a standard terminology except (maybe) descriptive set theory.
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The set
C =

⋂
n

⋃
a1,...,an

IntVn(a1, . . . , an)

is comeager. It remains to prove that C ⊂ B.
Let x ∈ C; we have to prove that x ∈ B. We note that x ∈ ∪a1 IntV1(a1)

and take ã1 such that x ∈ IntV1(ã1); such ã1 is unique, since the sets are
disjoint. Further, x ∈ ∪a1.a2 IntV2(a1, a2); we take a1, ã2 such that x ∈
IntV2(a1, ã2) and observe that a1 = ã1 since x ∈ IntV2(a1, ã2) ⊂ IntV1(a1).
And so on; x ∈ IntVn(ã[1 : n]) for all n. Bob is guaranteed to win the run(
Un(ã[1 : n]), Vn(ã[1 : n])

)
, therefore x ∈ B.

We see that the winning sets for Bob are exactly the comeager sets.
This is an interesting characterization (equivalent definition) of “meager”
and “comeager”, free of “nowhere dense”.

What about sets of full Lebesgue measure (on R)? These could not
be characterized via the Banach-Mazur game, since this game is evidently
invariant under homeomorphisms of R (to itself), while Lebesgue measure is
not, and moreover, the σ-ideal of null sets is not.

A “more quantitative” game may be designed as follows: Alice and Bob
choose intervals (not just open sets) and each interval must be twice shorter
than the previous interval.1 This is a special case of so-called Schmidt’s
game2 used in Diophantine approximations, ergodic theory etc. It is related
to some classes of measures,3 but fails to characterize the sets of full Lebesgue
measure. The complements of the winning sets are a σ-ideal; but this σ-ideal
appears to contain a set that is both comeager and of full Lebesgue measure!

We return to the Banach-Mazur game. What are the winning sets for
Alice? Such a set need not be “comeager everywhere”, it is enough to be
“comeager somewhere”.

3b7 Exercise. Let X be a metrizable space, U ⊂ X, U 6= ∅.
(a) If A ⊂ U is nowhere dense in U (treated as another metrizable space)

then A is nowhere dense in X;
(b) If A ⊂ U is meager in U then A is meager in X;
(c) if U is open and A ⊂ U is nowhere dense in X then A is nowhere

dense in U ;
(d) if U is open and A ⊂ U is meager in X then A is meager in U ;

1Another version: they choose binary digits, one after another. The results are similar.
2W.M. Schmidt (1966) “On badly approximable numbers and certain games”,

Trans. AMS 123, 178–199.
3R. Broderick, Y. Bugeaud, L. Fishman, D. Kleinbock, B. Weiss (2010) “Schmidt’s

game, fractals, and numbers normal to no base”, Math. Res. Lett. 17:2, 307–321.
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(e) items (c), (d) may fail if U is not open.
Prove it.

For an open U ⊂ X we see that A ⊂ U is meager in U if and only if A is
meager in X. Thus, A ⊂ U is comeager in U if and only if U \ A is meager
in X.

3b8 Definition. 1 Let X be a metrizable space, U ⊂ X a nonempty open
set, and A ⊂ X.

∗ A is meager in U , if A ∩ U is meager;

∗ A is comeager in U , if U \A is meager (equivalently: A∩U is comeager
in U);

∗ if A is comeager in U , we say that A holds generically in U or that U
forces A, and write U 
 A.

3b9 Exercise. A set is winning for Alice if and only if it is forced by some
nonempty open set.

Prove it.

Do you think that a winning strategy (either for Alice or for Bob) is
guaranteed to exist in all cases?

1Kechris, Sect. 8.G.
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Hints to exercises

3a4: (c) either use completion, or add to X a single (limit) point.

3a6: “only if”: use 1
m

-neighborhood of xn.

3a7: use 3a6; or alternatively, take yn ∈ Y such that ρ(yn, xn) ≤ 2 infy∈Y ρ(y, xn).

3a8: (a) if a space is not separable then inf{ρ(xm, xn) : m 6= n} > 0 for some
(xn)n.

3a10: similar to 3a1.

3b4: use 3a6.
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