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8a Fubini’s theorem

Roughly, Fubini’s theorem states that∫
dx

∫
dy f(x, y) =

∫∫
f(x, y) dxdy =

∫
dy

∫
dx f(x, y)

for every integrable f : R2 → R.
Tonelli’s theorem states the same equality for every measurable f : R2 →

[0,∞); in this case the integrals belong to [0,+∞]. In particular, for f :
R2 → {0, 1} we see that three measures are equal:1

∗ the two-dimensional Lebesgue measure,

∗ the measure A 7→
∫

dx
∫

dy 1lA(x, y) =
∫
m(Ay) dy,

∗ the measure A 7→
∫

dy
∫

dx 1lA(x, y) =
∫
m(Ax) dx;

here
Ax = {y : (x, y) ∈ A} , Ay = {x : (x, y) ∈ A} .

These three measures are evidently equal on product sets A = B × C (be
B,C ⊂ R arbitrary Lebesgue measurable sets or only intervals) and on the
algebra generated by these product sets. By (the uniqueness part of) the
Extension theorem2 they are equal on the generated σ-algebra, and therefore
on its completion, the two-dimensional Lebesgue σ-algebra.

1Measurability of the inner integrals is easy to check.
2“Warning: I’ve seen the following theorem called the Carathéodory extension theo-

rem, the Carathéodory-Fréchet extension theorem, the Carathéodory-Hopf extension the-
orem, the Hopf extension theorem, the Hahn-Kolmogorov extension theorem, and many
others that I can’t remember! We shall simply call it Extension Theorem. However, I
read in Folland’s book (p. 41) that the theorem is originally due to Maurice René Fréchet
(1878–1973) who proved it in 1924.” Paul Loya (page 33).

http://www.math.binghamton.edu/paul/505-S08/505-7.pdf
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All said holds on the product of two finite or σ-finite measure spaces.
However, it fails for m × ν where m is the Lebesgue measure on R and ν
is the counting measure on R, that is, ν({x}) = 1 for all x ∈ R (be it on
the Borel σ-algebra, or the σ-algebra of all subsets of R, or any intermediate
σ-algebra). The measures

A 7→
∫
m(dx)

∫
ν(dy) 1lA(x, y) =

∫
ν(Ax) dx =

∫
dx
∑
y

1lA(x, y) ,

A 7→
∫
ν(dy)

∫
m(dx) 1lA(x, y) =

∑
y

m(Ay) ,

being equal on the algebra generated by product sets, differ on the generated
σ-algebra. For example, take A = {(x, x) : 0 ≤ x ≤ a}, then

∫
ν(Ax) dx = a

but
∑

ym(Ay) = 0. By the way, the outer measure (w.r.t. the algebra
generated by product sets) of A is infinite (whenever a > 0).

Everyone knows that Fubini’s theorem is useful when calculating two-
dimensional integrals. This is the “quantitative” aspect. And here is the
“qualitative” aspect.

8a1 Theorem. The following three conditions on a Lebesgue measurable
set A ⊂ R2 are equivalent:

(a) for almost every x ∈ R the set

Ax = {y : (x, y) ∈ A}

is a null set (in R);
(b) A is a null set (in R2);
(c) for almost every y ∈ R the set

Ay = {x : (x, y) ∈ A}

is a null set (in R).

Similarly to the category quantifiers ∀∗, ∃∗ (recall Sect. 4d) we may in-
troduce measure quantifiers

∀mx for almost all x

∃mx for non-negligible set of x

and rewrite 8a1 (for the complement of A) as

∀mx ∀my (x, y) ∈ A ⇐⇒ ∀m×m(x, y) (x, y) ∈ A ⇐⇒ ∀my ∀mx (x, y) ∈ A .



Tel Aviv University, 2013 Measure and category 70

Or, equivalently (the negated claims for A itself)

∃mx ∃my (x, y) ∈ A ⇐⇒ ∃m×m(x, y) (x, y) ∈ A ⇐⇒ ∃my ∃mx (x, y) ∈ A .

The same holds on the product of two finite or σ-finite measure spaces
(but fails for m× ν).

Is this useful? Yes, it is! Here is an example from my recent work.1,2

If a random compact subset K of the square [0, 1] × [0, 1] has
almost surely uncountable first projection {x : ∃y (x, y) ∈ K}
then there exists a continuous function f : [0, 1] → [0, 1] whose
graph Gf = {(x, f(x)) : 0 ≤ x ≤ 1} meets K with positive
probability.

For proving this claim I construct a random f that meets K with positive
probability (when f and K are independent random objects) and apply 8a1
to the event K ∩Gf 6= ∅; condition (b) is violated, therefore (a) is violated;
that is, the set of functions with the required property is not null, therefore
not empty.

Measurability of A ⊂ R2 is crucial. The choice axiom ensures existence
of a well-order “≺” on R such that for every y ∈ R the set {x : x ≺ y} is of
cardinality less than continuum. Assuming the continuum hypothesis we get
a set A = {(x, y) : x ≺ y} ⊂ R2 such that each Ay is (at most) countable,
and each R \Ax is (at most) countable. Thus, A violates 8a1(a) but satisfies
8a1(c).

8b Kuratowski-Ulam theorem

8b1 Theorem. The following three conditions on a set A ∈ BP(R2) are
equivalent:

(a) for quasi all x ∈ R the set Ax is meager (in R);
(b) A is meager (in R2);
(c) for quasi all y ∈ R the set Ay is meager (in R).

That is,

∀∗x ∀∗y (x, y) ∈ A ⇐⇒ ∀∗(x, y) (x, y) ∈ A ⇐⇒ ∀∗y ∀∗x (x, y) ∈ A .
1B. Tsirelson, “Random compact set meets the graph of nonrandom continuous func-

tion”, arXiv:1308.5112.
2Another example from my older work: a so-called spectral set is a kind of random

set that contains each point with probability zero, and therefore is (almost surely) of
zero Lebesgue measure; see B. Tsirelson, “Nonclassical stochastic flows and continuous
products”, page 274.

http://arxiv.org/abs/1308.5112
http://dx.doi.org/10.1214/154957804100000042
http://dx.doi.org/10.1214/154957804100000042
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Or, equivalently,

∃∗x ∃∗y (x, y) ∈ A ⇐⇒ ∃∗(x, y) (x, y) ∈ A ⇐⇒ ∃∗y ∃∗x (x, y) ∈ A .

The conclusion may fail on R× (R, d) (d being the discrete metric). Con-
sider the closed set A = {(x, y) : x = y} ⊂ R × (R, d); it is nowhere dense,
each Ay is meager, but no Ax is meager.

Theorem 8b1 holds on the product of two Polish spaces.

8b2 Lemma. Let X be completely metrizable and Y Polish (or just sepa-
rable). If G ⊂ X × Y is a dense open set then Gx ⊂ Y is a dense open set
for quasi all x ∈ X.

Proof. Clearly, each Gx is open.
The projection {x : ∃y (x, y) ∈ G} is a dense open set (think, why).

Given a nonempty open U ⊂ Y , the set G∩ (X×U) is dense open in X×U ,
therefore (as before) its projection is dense open in X. For quasi all x we
have ∃y ∈ U (x, y) ∈ G, that is, Gx ∩ U 6= ∅.

We take a countable base (Un)n in Y . For quasi all x we have ∀n Gx∩Un 6=
∅, thus Gx is dense.

8b3 Exercise. Let X be completely metrizable and Y Polish.
(a) If A ⊂ X × Y is nowhere dense then Ax ⊂ Y is nowhere dense for

quasi all x ∈ X.
(b) If A ⊂ X × Y is meager then Ax ⊂ Y is meager for quasi all x ∈ X.
(c) If [A] = [B] (that is, A4B is meager) then [Ax] = [Bx] for quasi all

x ∈ X.
(d) If A ∈ BP(X × Y ) then Ax ∈ BP(Y ) for quasi all x ∈ X.

Prove it.

Remark. Similarly to 8b3(d), if A ⊂ R2 is Lebesgue measurable then Ax

is Lebesgue measurable for almost all x ∈ R.

Proof of Theorem 8b1 (for Polish X, Y ). (b)=⇒(a) by 8b3(b); similarly,
(b)=⇒(c). We have to prove that (a)=⇒(b).

If A ∈ BP(X × Y ) is not meager then [A] = [G] for some open G 6= ∅; by
8b3(c), [Ax] = [Gx] for quasi all x ∈ X. The projection G1 = {x : ∃y (x, y) ∈
G} ⊂ X is a nonempty open set, and Gx is nonempty open for all x ∈ G1.
Thus, Ax is not meager for all x of the non-meager set G1.

Remark. The proof of the equivalence (a)⇐⇒(b) uses separability of Y
only. Separability of X ensures the other equivalence, (b)⇐⇒(c).

The Baire property of A ⊂ R2 is crucial. Once again, ZFC does not
exclude existence of A such that each Ay is (at most) countable, and each
R \ Ax is (at most) countable. Thus, A violates 8b1(a) but satisfies 8b1(c).
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8c Some zero-one laws

Functions of the form lim supn fn ◦ Tn appeared in Sect. 2, T being the shift
on {0, 1}∞. They are tail functions, as defined below.

Let X1, X2, . . . be nonempty sets and X = X1 ×X2 × . . . their product.
Consider an equivalence relation

x ∼ y ⇐⇒ ∃n ∀k x(n+ k) = y(n+ k)

and the corresponding equivalence classes [x] (called germs).
A function f : X → Y (Y being another set) is called a tail function if

x ∼ y =⇒ f(x) = f(y).
A set A ⊂ X is called a tail set if its indicator 1lA is a tail function. That

is,
x ∼ y =⇒

(
x ∈ A ⇐⇒ y ∈ A

)
.

Note that (f is a tail function) ⇐⇒ ∀y ∈ Y
(
f−1(y) is a tail set

)
⇐⇒ ∀B ⊂ Y

(
f−1(B) is a tail set

)
.

Every function f : X → R of the form

f(x1, x2, . . . ) = lim sup
n

fn(xn, xn+1, . . . )

(with fn : Xn × Xn+1 × · · · → R) is a tail function. Also, every function
f : X → Y (Y being a metrizable space) of the form

f(x1, x2, . . . ) = lim
n
fn(xn, xn+1, . . . )

(with fn : Xn ×Xn+1 × · · · → Y ) is a tail function.
Here is a special case of Kolmogorov’s zero-one law.

8c1 Theorem. Every measurable tail set in {0, 1}∞ is either a null set or a
set of full measure.

The same holds on the product of arbitrary probability spaces.
Here is a special case of the second topological zero-one law.

8c2 Theorem. Every tail set in BP
(
{0, 1}∞

)
is either meager or comeager.

The same holds on the product of arbitrary Polish spaces.

8c3 Exercise. Let Y be a separable metrizable space and f : {0, 1}∞ → Y
a Borel measurable tail function. Then there exist y1, y2 ∈ Y such that
f(x) = y1 for almost all x and f(x) = y2 for quasi all x.

Deduce it from 8c1, 8c2. Can it happen that y1 6= y2?
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8c4 Exercise. (a) Using the choice axiom prove existence of a tail function
f : {0, 1}∞ → {0, 1} such that

f(1− x1, 1− x2, . . . ) = 1− f(x1, x2, . . . ) for all (xn)n ∈ {0, 1}∞ .

(b) Deduce from 8c1, 8c2 that such function cannot be Lebesgue measur-
able, and cannot have the Baire property.

Proof of Theorem 8c2 (for Polish spaces). Given n, we may treat X as Y ×Z
where Y = X1× · · · ×Xn and Z = Xn+1×Xn+2× . . . We note that Ay does
not depend on y ∈ Y (since A is a tail set) and take C ⊂ Z such that

∀y ∈ Y Ay = C .

On the other hand, A ∈ BP(X), thus [A] = [G] for some open G ⊂ X.
If G = ∅ then A is meager.
Otherwise, taking the product topology into account, we find n and a

nonempty open U ⊂ Y such that G ⊃ U × Z; that is,

∀y ∈ U Gy = Z .

By 8b3(c), [Ay] = [Gy] for quasi all y ∈ Y . Thus, for quasi all y ∈ U we have

[C] = [Ay] = [Gy] = [Z] .

We see that Ay is comeager for all y; by the Kuratowski-Ulam theorem, A is
comeager.

On the set {0, 1}∞ we have the algebra of “elementary” (or “cylindrical”,
or “clopen”) sets; these are the sets of the form {x : x[1 : n] ∈ E}, E ⊂
{0, 1}n, n = 1, 2, . . .

8c5 Lemma. If A ⊂ {0, 1}∞ is a measurable tail set then

m(A ∩B) = m(A)m(B)

for all elementary sets B ⊂ {0, 1}∞.

Proof. Given n, we may treat {0, 1}∞ as Y × Z where Y = {0, 1}n and
Z = {0, 1}∞. Accordingly, A = Y ×C for some C ⊂ Z; C is measurable and
mZ(C) = m(A).

If B = B̃ × Z, B̃ ⊂ Y , then mY (B̃) = m(B), and A ∩ B = B̃ × C, thus
m(A ∩B) = mY (B̃)mZ(C) = m(B)m(A).
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Proof of Theorem 8c1. Two measures, B 7→ m(A∩B) and B 7→ m(A)m(B),
are equal (by Lemma 8c5) on the elementary algebra. By (the uniqueness
part of) the Extension theorem (again!) they are equal on the generated
σ-algebra (the Borel σ-algebra) and therefore on its completion, the Lebesgue
σ-algebra on {0, 1}∞.

In particular (for B = A), m(A ∩ A) = m(A)m(A), therefore m(A) is
either 0 or 1.

Here is another kind of zero-one laws, not related (directly) to Fubini-like
theorems.

8c6 Theorem. If a measurable A ⊂ R satisfies m
(
A4(A + r)

)
= 0 for all

rational r then A is either a null set or a set of full measure.

8c7 Theorem. If a set A ∈ BP(R) satisfies [A] = [A + r] for all rational r
then A is either meager or comeager.

Proof. Recall the selector [A] 7→ U(A) ∈ [A] discussed in Sect. 6c; U(A) is
open. We have U + r = U for all rational r, which evidently implies either
U = ∅ or U = R.

8c8 Exercise. Prove Theorem 8c6 by examining the measureB 7→ m(A∩B).

Hints to exercises

8b3: 8b2=⇒(a)=⇒(b)=⇒(c)=⇒(d).
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