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8a Fubini’s theorem

Roughly, Fubini’s theorem states that

[as [avsn = [[ iy = [ay [desioy

for every integrable f : R? — R.

Tonelli’s theorem states the same equality for every measurable f : R? —
[0,00); in this case the integrals belong to [0,+oc]. In particular, for f :
R? — {0,1} we see that three measures are equal:!

x the two-dimensional Lebesgue measure,
* the measure A — [dz [dyLa(z,y) = [ m(AY)dy,
* the measure A — [dy [dz (2, y) = [ m(A,)dz;
here
A, ={y: (z,y) € A}, AY={x:(x,y) € A}.

These three measures are evidently equal on product sets A = B x C' (be
B,C C R arbitrary Lebesgue measurable sets or only intervals) and on the
algebra generated by these product sets. By (the uniqueness part of) the
Extension theorem? they are equal on the generated o-algebra, and therefore
on its completion, the two-dimensional Lebesgue o-algebra.

Measurability of the inner integrals is easy to check.

2“Warning: I've seen the following theorem called the Carathéodory extension theo-
rem, the Carathéodory-Fréchet extension theorem, the Carathéodory-Hopf extension the-
orem, the Hopf extension theorem, the Hahn-Kolmogorov extension theorem, and many
others that I can’t remember! We shall simply call it Extension Theorem. However, I
read in Folland’s book (p. 41) that the theorem is originally due to Maurice René Fréchet
(1878-1973) who proved it in 1924.” Paul Loya (page 33).


http://www.math.binghamton.edu/paul/505-S08/505-7.pdf
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All said holds on the product of two finite or o-finite measure spaces.
However, it fails for m x v where m is the Lebesgue measure on R and v
is the counting measure on R, that is, v({z}) = 1 for all z € R (be it on
the Borel o-algebra, or the o-algebra of all subsets of R, or any intermediate
o-algebra). The measures

A / m(dz) / V(dy) Ta(z,y) / V(A de = / de Y iz, y),
A /u(dy)/m(dx) La(z,y) = Zm(Ay),

being equal on the algebra generated by product sets, differ on the generated
o-algebra. For example, take A = {(z,z) : 0 <2 < a}, then [v(A4,)dz =a
but Zy m(AY) = 0. By the way, the outer measure (w.r.t. the algebra
generated by product sets) of A is infinite (whenever a > 0).

Everyone knows that Fubini’s theorem is useful when calculating two-
dimensional integrals. This is the “quantitative” aspect. And here is the
“qualitative” aspect.

8al Theorem. The following three conditions on a Lebesgue measurable
set A C R? are equivalent:
(a) for almost every = € R the set

Ay ={y: (z,y) € A}

is a null set (in R);
(b) A is a null set (in R?);
(c) for almost every y € R the set

AV ={x: (z,y) € A}
is a null set (in R).

Similarly to the category quantifiers V*, 3* (recall Sect. 4d) we may in-
troduce measure quantifiers

Y™z for almost all x

4"z for non-negligible set of x
and rewrite (for the complement of A) as

Vi Yy (x,y) € A = Y™ (x,y) (v,y) € A <= YV"yV"x (z,y) € A.
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Or, equivalently (the negated claims for A itself)
I Iy (z,y) € A <= T""(z,y) (x,y) € A — Ty Iz (z,y) € A.

The same holds on the product of two finite or o-finite measure spaces
(but fails for m x v).

Is this useful? Yes, it is! Here is an example from my recent work.!?

If a random compact subset K of the square [0,1] x [0, 1] has
almost surely uncountable first projection {z : Jy (x,y) € K}
then there exists a continuous function f : [0,1] — [0,1] whose
graph Gy = {(z, f(z)) : 0 < z < 1} meets K with positive
probability.

For proving this claim I construct a random f that meets K with positive
probability (when f and K are independent random objects) and apply
to the event K N G # 0; condition (b) is violated, therefore (a) is violated;
that is, the set of functions with the required property is not null, therefore
not empty.

Measurability of A C R? is crucial. The choice axiom ensures existence
of a well-order “<” on R such that for every y € R the set {z : z < y} is of
cardinality less than continuum. Assuming the continuum hypothesis we get
aset A= {(z,y): x <y} C R? such that each AY is (at most) countable,
and each R\ A, is (at most) countable. Thus, A violates[8al|a) but satisfies
8alf(c).

8b Kuratowski-Ulam theorem

8b1 Theorem. The following three conditions on a set A € BP(R?) are
equivalent:

(a) for quasi all x € R the set A, is meager (in R);

(b) A is meager (in R?);

(c) for quasi all y € R the set AY is meager (in R).

That is,

VaVy (z,y) € A <= Y (zr,y) (v,y) € A <— YyVuz (z,y € A.

IB. Tsirelson, “Random compact set meets the graph of nonrandom continuous func-
tion”, arXiv:1308.5112,

2 Another example from my older work: a so-called spectral set is a kind of random
set that contains each point with probability zero, and therefore is (almost surely) of
zero Lebesgue measure; see B. Tsirelson, “Nonclassical stochastic flows and continuous
products”, page 274.


http://arxiv.org/abs/1308.5112
http://dx.doi.org/10.1214/154957804100000042
http://dx.doi.org/10.1214/154957804100000042
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Or, equivalently,
'z Ty (x,y) € A <— I (v,y) (zv,y) € A — FyIz (z,y) € A.

The conclusion may fail on R x (R, d) (d being the discrete metric). Con-
sider the closed set A = {(z,y) : * = y} C R x (R,d); it is nowhere dense,
each AY is meager, but no A, is meager.

Theorem holds on the product of two Polish spaces.

8b2 Lemma. Let X be completely metrizable and Y Polish (or just sepa-
rable). If G C X x Y is a dense open set then G, C Y is a dense open set
for quasi all x € X.

Proof. Clearly, each G, is open.

The projection {z : Jy (z,y) € G} is a dense open set (think, why).
Given a nonempty open U C Y, the set GN (X x U) is dense open in X x U,
therefore (as before) its projection is dense open in X. For quasi all x we
have 3y € U (z,y) € G, that is, G, NU # 0.

We take a countable base (U,),, in Y. For quasi all z we have Vn G,NU,, #
(0, thus G, is dense. O

8b3 Exercise. Let X be completely metrizable and Y Polish.
(a) If A C X xY is nowhere dense then A, C Y is nowhere dense for
quasi all x € X.
(b) If A C X xY is meager then A, C Y is meager for quasi all z € X.
(c) If [A] = [B] (that is, AAB is meager) then [A,] = [B,] for quasi all
reX.
(d) If A e BP(X xY) then A, € BP(Y) for quasi all z € X.
Prove it.

Remark. Similarly to[8b3|(d), if A C R? is Lebesgue measurable then A,
is Lebesgue measurable for almost all = € R.

Proof of Theorem[8b]] (for Polish X,Y ). (b)==(a) by [Bb3|(b); similarly,
(b)=(c). We have to prove that (a)=(Db).

If A€ BP(X xY) is not meager then [A] = [G] for some open G # (); by
8b3(c), [A.] = [G.] for quasi all x € X. The projection G; = {z : Jy (x,y) €
G} C X is a nonempty open set, and G, is nonempty open for all z € G;.
Thus, A, is not meager for all x of the non-meager set G. O

Remark. The proof of the equivalence (a)<=>(b) uses separability of YV’
only. Separability of X ensures the other equivalence, (b)<=(c).

The Baire property of A C R? is crucial. Once again, ZFC does not
exclude existence of A such that each AY is (at most) countable, and each

R\ 4, is (at most) countable. Thus, A violates [8bl|(a) but satisfies 8b1](c).
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8c Some zero-one laws

Functions of the form lim sup,, f, o 7;, appeared in Sect. 2, T" being the shift
on {0,1}*. They are tail functions, as defined below.

Let X1, X5, ... be nonempty sets and X = X; x Xy x ... their product.
Consider an equivalence relation

r~y <= dnVk z(n+k)=yn+k)

and the corresponding equivalence classes [z] (called germs).
A function f: X — Y (Y being another set) is called a tail function if

z~y = f(z) = f(y)
A set A C X is called a tail set if its indicator 14 is a tail function. That
is,
r~y = (red = yeA).
Note that (f is a tail function) <= Vy € Y (f7'(y) is a tail set)
— VB CY (f7Y(B) is a tail set).
Every function f : X — R of the form

f(xy,z9,...) =limsup fu(zn, Tpi1,.--)

(with f, : X, X X411 X --+ = R) is a tail function. Also, every function
f: X =Y (Y being a metrizable space) of the form

flz1,xe,...) = liTanfn(a:n,an, o)

(with f, : X, X X1 X -+ = Y) is a tail function.
Here is a special case of Kolmogorov’s zero-one law.

8cl Theorem. Every measurable tail set in {0, 1}° is either a null set or a
set of full measure.

The same holds on the product of arbitrary probability spaces.
Here is a special case of the second topological zero-one law.

8c2 Theorem. Every tail set in BP({O7 1}°°) is either meager or comeager.
The same holds on the product of arbitrary Polish spaces.

8c3 Exercise. Let Y be a separable metrizable space and f : {0,1}> =Y
a Borel measurable tail function. Then there exist y;,y2 € Y such that
f(z) =y for almost all  and f(x) = y, for quasi all .

Deduce it from Bc2l Can it happen that y; # yo?
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8c4 Exercise. (a) Using the choice axiom prove existence of a tail function
f:{0,1}> — {0, 1} such that

f(l=—z,1—29,...)=1— f(xy,m9,...) forall (z,), € {0,1}*.

(b) Deduce from [Bcl], that such function cannot be Lebesgue measur-
able, and cannot have the Baire property.

Proof of Theorem (for Polish spaces). Given n, we may treat X asY x Z
where Y = X x--- x X,, and Z = X, 1 X X;,42 X ... We note that A, does
not depend on y € Y (since A is a tail set) and take C' C Z such that

VyeY A, =C.

On the other hand, A € BP(X), thus [4] = [G] for some open G C X.

If G = () then A is meager.

Otherwise, taking the product topology into account, we find n and a
nonempty open U C Y such that G D U x Z; that is,

VyeU G, = Z.

By - G| for quasi all y € Y. Thus, for quasi all y € U we have

We see that A, is comeager for all y; by the Kuratowski-Ulam theorem, A is
comeager. O

On the set {0, 1}>° we have the algebra of “elementary” (or “cylindrical”,
or “clopen”) sets; these are the sets of the form {x : z[l : n] € E}, E C
(0,1}, n=1,2,...

8c5 Lemma. If A C {0,1}* is a measurable tail set then
m(AN B) =m(A)m(B)
for all elementary sets B C {0, 1}°°.

Proof. Given n, we may treat {0,1}* as Y x Z where Y = {0,1}" and
Z ={0,1}*. Accordingly, A =Y x C for some C' C Z; C is measurable and
mz(C) =m(A). )

If B=BxZ, BCYthenmy(): m(B), and AN B = B x C, thus
m(AN B) = my(B)mz(C) = m(B)m(A). O
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Proof of Theorem [8ci. Two measures, B — m(ANB) and B — m(A)m(B),
are equal (by Lemma on the elementary algebra. By (the uniqueness
part of) the Extension theorem (again!) they are equal on the generated
o-algebra (the Borel o-algebra) and therefore on its completion, the Lebesgue
o-algebra on {0, 1}.

In particular (for B = A), m(A N A) = m(A)m(A), therefore m(A) is
either 0 or 1. [

Here is another kind of zero-one laws, not related (directly) to Fubini-like
theorems.

8c6 Theorem. If a measurable A C R satisfies m(AA(A + 7)) = 0 for all
rational r then A is either a null set or a set of full measure.

8c7 Theorem. If a set A € BP(R) satisfies [A] = [A + r] for all rational r
then A is either meager or comeager.

Proof. Recall the selector [A] — U(A) € [A] discussed in Sect. 6¢; U(A) is
open. We have U + r = U for all rational r, which evidently implies either
U=0orU=R. O

8c8 Exercise. Prove Theorem [8c6]by examining the measure B — m(ANB).

Hints to exercises

£ B0 (a)— (b)— (c)— (d).

measure quantifiers, Im,

tail function,
tail set,
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