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9a Finite Taylor expansion

An infinitely differentiable function R → R need not be analytic. It has a
formal Taylor expansion, but maybe of zero radius of convergence, or maybe
converging to a different function. An example:

f(x) = e−1/x for x > 0 , f(x) = 0 for x ≤ 0 .

9a1 Theorem. 1 2 If an infinitely differentiable function f : R→ R is not a
polynomial then there exists x ∈ R such that f (n)(x) is irrational for all n.

Thus, ∃x ∀n f (n)(x) 6= 0.
The set of rational numbers may be replaced with any other countable

set.
We’ll prove the theorem via iterated Baire category theorem.

9a2 Lemma. If f is a polynomial on [a, b] and ∀n f(b+ εn) = f(b) for some
εn → 0+ then f is constant on [a, b].

1Exercise 10.2.9 in book: B. Thomson, J. Bruckner, A. Bruckner, “Real analysis”,
second edition, 2008.

2The theorem:
Theorem: Let f(x) be C∞ on (c, d) such that for every point x in the interval there exists
an integer Nx for which f (Nx)(x) = 0; then f(x) is a polynomial.

is due to two Catalan mathematicians:
F. Sunyer i Balaguer, E. Corominas, Sur des conditions pour qu’une fonction infiniment
dérivable soit un polynôme. Comptes Rendues Acad. Sci. Paris, 238 (1954), 558-559.
F. Sunyer i Balaguer, E. Corominas, Condiciones para que una función infinitamente
derivable sea un polinomio. Rev. Mat. Hispano Americana, (4), 14 (1954).

The proof can also be found in the book (p. 53):
W. F. Donoghue, Distributions and Fourier Transforms, Academic Press, New York, 1969.

I will never forget it because in an ”Exercise” of the ”Opposition” to became ”Full
Professor” I was posed the following problem:
What are the real functions indefinitely differentiable on an interval such that a derivative
vanish at each point?

Juan Arias de Reyna; see Question 34059 on Mathoverflow.

http://mathoverflow.net/questions/34059
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Proof. We have f (n)(b) = 0 for n = 1, 2, . . . since otherwise f(b + ε) =
f(b) + cεk + o(εk) for some k ≥ 1 and c 6= 0.

The same holds for f(a− εn), of course.

Assume that f is a counterexample to Theorem 9a1.

Consider a (maybe empty) set Pf of all maximal nondegenerate intervals
I ⊂ R such that f is a polynomial on I. Note that intervals of Pf are closed
and pairwise disjoint.

9a3 Lemma. The open set

Gf =
⋃
I∈Pf

Int I

is dense (in R).

Proof. Closed sets

Fn,r = {x : f (n)(x) = r} for r ∈ Q and n = 0, 1, 2, . . .

cover R. By (5b7), ∪n,r IntFn,r is dense. Clearly, f is a polynomial on each
interval contained in this dense open set.

It follows that Pf , treated as a totally (in other words, linearly) ordered
set, is dense (that is, if I1, I2 ∈ Pf , I1 < I2 then ∃I ∈ Pf I1 < I < I2).
It may contain minimal and/or maximal element (unbounded intervals), but
the rest of Pf , being an unbounded dense countable totally ordered set, is
order isomorphic to Q ∩ (0, 1) (the proof is similar to the proof of Lemma
2d4; so-called back-and-forth method).

Now we want to contract each interval of Pf into a point. (We could
consider a topological quotient space. . . )

We take an order isomorphism ϕ : Pf → Q between Pf and one of
Q ∩ (0, 1), Q ∩ [0, 1), Q ∩ (0, 1], Q ∩ [0, 1], and construct an increasing ψ :
R→ [0, 1] such that ψ(x) = ϕ(I) whenever x ∈ I. Clearly, such ψ exists and
is unique. It is continuous. The image ψ(R) is one of (0, 1), [0, 1), (0, 1], [0, 1].
In every case ψ(R) is completely metrizable. Note that ψ−1(Q) = ∪I∈Pf

I,
and ψ is one-to-one on R \ ∪I∈Pf

I.
We define En,r ⊂ ψ(R) for r ∈ Q and n = 0, 1, 2, . . . as follows:

En,r = {x : ψ−1(x) ⊂ Fn,r} .

9a4 Lemma. Each En,r is closed in ψ(R).
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Proof. Given x1 > x2 > . . . , xk ∈ En,r, xk ↓ x in ψ(R), we take tk ∈
ψ−1(xk) ⊂ Fn,r and note that t1 > t2 > . . . , tk ↓ t ∈ ψ−1(x), f (n)(tk) = r for
all k, thus f (n)(t) = r, that is, t ∈ Fn,r.

If x is irrational then x ∈ En,r since ψ−1(x) = {t}.
If x is rational then ψ−1(x) = [s, t], and f (n)(·) = r on [s, t] by Lemma

9a2 (applied to f (n)).
The case xk ↑ x is similar.

9a5 Exercise. Each En,r is nowhere dense in ψ(R).
Prove it.

Now Theorem 9a1 follows from the Baire category theorem (applied the
second time).

9a6 Corollary. If an infinitely differentiable function f : Rd → R has only
finitely many non-zero partial derivatives at every point then f is a polyno-
mial.

Proof. Let d = 2 (the general case is similar).
By Theorem 9a1, for every x ∈ R the function f(x, ·) : R → R is a

polynomial; similarly, each f(·, y) is a polynomial. Introducing the set An of
all x ∈ R such that f(x, ·) is a polynomial of degree ≤ n we have An ↑ R,
therefore An is infinite (moreover, uncountable) for n large enough. The
same holds for f(·, y) and Bn.

For x ∈ An the coefficients a0(x), . . . , an(x) of the polynomial f(x, ·) are
linear functions of f(x, y0), . . . , f(x, yn) provided that y0, . . . , yn ∈ Bn are
pairwise different. Therefore these coefficients are polynomials (in x), of
degree ≤ n.

We get a polynomial P : R2 → R such that f(x, y) = P (x, y) for x ∈ An,
y ∈ R. For every y ∈ R two polynomials f(·, y) and P (·, y) coincide on the
infinite set An, therefore they coincide on the whole R.

A very similar (and a bit simpler) argument gives an interesting purely
topological result.

9a7 Theorem. 1 If [0, 1] is the disjoint union of countably many closed sets
then one of the sets is the whole [0, 1] (and others are empty).

Proof. (sketch). Assume the contrary: [0, 1] = ]nFn, Fn 6= ∅ are closed.
(Finitely many sets cannot do because of connectedness.) Then ∪n IntFn is
dense in [0, 1].

1Exercise 10:2.8 in “Real analysis”. Also Problem 13.15.3 in book: B. Thomson,
J. Bruckner, A. Bruckner, “Elementary real analysis”, second edition, 2008.
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Consider a (maybe empty) set P of all maximal nondegenerate intervals
I ⊂ [0, 1] such that ∃n I ⊂ Fn. Note that intervals of Pf are closed and
pairwise disjoint. The open set G = ∪I∈P Int I is dense in [0, 1], since it
contains ∪n IntFn.

It follows that P , treated as a totally ordered set, is dense. Thus, the set
C = [0, 1] \G is perfect, with no interior (and in fact, homeomorphic to the
Cantor set).

As before, each Fn ∩ C is nowhere dense in C. (Hint: if an endpoint of
an interval I ∈ P belongs to Fn ∩ C then I ⊂ Fn.)

It remains to apply the Baire category theorem (in the second time).

9a8 Corollary. If the cube [0, 1]d is the disjoint union of countably many
closed sets then one of the sets is the whole [0, 1]d (and others are empty).

Proof. Let d = 2 (the general case is similar).
Assume the contrary: [0, 1]2 = ]nFn, Fn are closed.
By Theorem 9a7, each {x} × [0, 1] is contained in a single Fn. The same

holds for each [0, 1]× {y}. Thus, it is a single n.

I wonder, is it true for an arbitrary continuum (that is, a compact con-
nected metrizable space)?

9b Continuous and nowhere differentiable

9b1 Theorem. There exists a continuous function f : [0, 1]→ R such that
for every x ∈ (0, 1), f is not differentiable at x.

We consider the complete metric space C[0, 1] of all continuous f : [0, 1]→
R (separable, in fact). We define continuous functions ϕn : C[0, 1]→ R by

ϕn(f) = min
k=1,...,n

∣∣∣f(k
n

)
− f

(k − 1

n

)∣∣∣ .
Clearly, ϕn → 0 pointwise. What about the rate of convergence? We take
arbitrary εn → 0 and examine 1

εn
ϕn.

9b2 Exercise. lim sup
n→∞,g→f

1

εn
ϕn(g) =∞ for all f ∈ C[0, 1].

Prove it.

By Prop. 5b9,

(9b3) lim sup
n→∞

1

εn
ϕn(f) =∞
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for quasi all f ∈ C[0, 1].
On the other hand, if f is differentiable at x0 ∈ (0, 1) then f(x)−f(x0) =

O(|x− x0|), that is,

∃C ∀x ∈ [0, 1] |f(x)− f(x0)| ≤ C|x− x0| .

Taking k such that k−1
n
, k
n
∈ [x0 − 1

n
, x0 + 1

n
] we get |f

(
k
n

)
− f

(
k−1
n

)
| ≤ 2C

n
.

Thus,

∀n ϕn(f) ≤ 2C

n
.

By (9b3), such f are a meager set, which proves Theorem 9b1.

9b4 Exercise. There exists a continuous function f : [0, 1] → R such that
for every x ∈ (0, 1)

lim sup
y→x−

|f(y)− f(x)| log log log
1

|y − x|
=∞ ,

lim sup
y→x+

|f(y)− f(x)| log log log
1

|y − x|
=∞ .

Prove it.

However, |f(y) − f(x)| cannot be replaced with f(y) − f(x). If C >
f(1)− f(0) then there exists x ∈ (0, 1) such that

lim sup
y→x+

f(y)− f(x)

y − x
≤ C

and moreover, supy∈(x,1]
f(y)−f(x)

y−x ≤ C. Proof (sketch): choose b ∈
(
f(1) −

C, f(0)
)

and take the greatest x such that f(x) ≥ Cx+ b.

9c Differentiable and nowhere monotone

9c1 Theorem. 1 There exists a differentiable function f : [0, 1] → R such
that for every (a, b) ⊂ [0, 1], f is not monotone on (a, b).

9c2 Lemma. 2 There exists a strictly increasing differentiable function f :
[0, 1]→ R such that f ′(·) = 0 on a dense set.

1C.E. Weil (1976) “On nowhere monotone functions”, Proc. AMS 56, 388–389. (Yes,
two pages!) See also Sect. 10.7.2 in “Real analysis”.

2S. Marcus (1963) “Sur les dérivées dont les zéros forment un ensemble frontière partout
dense”, Rend. Circ. Mat. Palermo (2) 12, 5–40.
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Proof. We’ll construct a continuous strictly increasing surjective g : [0, 1]→
[0, 1] such that the inverse function f = g−1 : [0, 1] → [0, 1] has the needed
properties. It is sufficient to ensure that (finite or infinite) derivative g′(·) ∈
(0,∞] exists everywhere (and never vanishes), and is infinite on a dense set.

A function
α(x) = x1/3

is strictly increasing (on R), with α′(0) = +∞ and α′(x) ∈ (0,∞) for x 6= 0.
We introduce

A = max
h6=0

α(1 + h)− α(1)

hα′(1)
∈ (0,∞)

(this continuous function vanishes on ±∞; in fact, A = 4) and note that

(9c3)
α(x+ h)− α(x)

hα′(x)
≤ A

for all h 6= 0 and x (since for x 6= 0 it equals
x1/3(α(1+h

x
)−α(1))

hx−2/3α′(1)
=

α(1+h
x
)−α(1)

h
x
α′(1)

).

Similarly to Sect. 5a we choose some an, cn ∈ (0, 1) such that an are
pairwise distinct, dense, and

∑
n cn <∞. The series

β(x) =
∞∑
n=1

cnα(x− an)

converges uniformly on [0, 1] (since |α(·)| ≤ 1 and
∑

n cn < ∞). The series∑∞
n=1 cnα

′(x − an) converges (to a finite sum) for some x and diverges (to
+∞) for other x (in particular, for x ∈ {a1, a2, . . . }). We consider βn(x) =∑n

k=1 ckα(x−ak) and γn(x) = β(x)−βn(x) =
∑∞

k=n+1 ckα(x−ak). By (9c3),

0 ≤ γn(x+ h)− γn(x)

h
≤ A

∞∑
k=n+1

ckα
′(x− ak)

for all h 6= 0 and x. Thus (similarly to Sect. 5a)

β′n(x)︸ ︷︷ ︸
−→
n

∑∞
k=1 ckα

′(x−ak)

≤ lim inf
h→0

β(x+ h)− β(x)

h
≤

≤ lim sup
h→0

β(x+ h)− β(x)

h
≤ β′n(x) + A

∞∑
k=n+1

ckα
′(x− ak) ,

therefore

β′(x) =
∞∑
n=1

cnα
′(x− an) ∈ (0,∞]
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for all x.
It remains to take g(x) = β(x)−β(0)

β(1)−β(0) .

Do not think that β′(·) = ∞ only on the countable set {a1, a2, . . . }.
Amazingly, f ′(x) = 0 for quasi all x ∈ [0, 1] (and therefore β′(x) = ∞ for
quasi all x ∈ [0, 1]). Here is why. By 5b2 and 5c5, f ′ is of Baire class 1, thus,
{x : f ′(x) 6= 0} is an Fσ set, and {x : f ′(x) = 0} is a Gδ set;1 being dense it
must be comeager (as noted before 5c2).

We introduce the space D of all bounded derivatives on (0, 1); that is, of
F ′ for all differentiable F : (0, 1) → R such that F ′ is bounded. We endow
D with the metric

ρ(f, g) = sup
x∈(0,1)

|f(x)− g(x)| .

9c4 Exercise. (a) D is a complete metric space.
(b) D is not separable.

Prove it.

We consider a subspace D0 of all f ∈ D such that f(x) = 0 for quasi all
x. As noted above, this happens if and only if f(·) = 0 on a dense set. By
9c2, D0 is not {0}; moreover, for every x ∈ (0, 1) there exists f ∈ D0 such
that f(x) 6= 0 (try f(ax+ b)).

9c5 Exercise. (a) D0 is a vector space; that is, a linear combination of two
functions of D0 is a function of D0.

(b) D0 is a closed subset of D.
Prove it.

Given (a, b) ⊂ (0, 1), the set

Ea,b = {f ∈ D0 : ∀x ∈ (a, b) f(x) ≥ 0}

is closed (evidently). Given f ∈ Ea,b, we take x ∈ (a, b) such that f(x) = 0
and g ∈ D0 such that g(x) > 0. Then f − εg ∈ D0 and f − εg /∈ Ea,b for all
ε > 0; thus, f is not an interior point of Ea,b. We see that Ea,b is nowhere
dense. Similarly, −Ea,b = {f ∈ D0 : ∀x ∈ (a, b) f(x) ≤ 0} is nowhere dense.
It follows that quasi all functions of D0 change the sign on every interval.
Theorem 9c1 is thus proved.

1A straightforward representation

f ′(x) = 0 ⇐⇒ ∀ε ∃δ ∀h
(
|h| < δ =⇒ |f(x+ h)− f(x)| ≤ ε|h|

)
gives only Fσδ. Taking into account that f is differentiable we have another representation

f ′(x) = 0 ⇐⇒ ∀ε ∃h
(
|h| < ε ∧ |f(x+ h)− f(x)| < ε|h|

)
that gives Gδ.
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Hints to exercises

9a5: otherwise, some interval of Pf is not maximal.

9b2: g( k
n
) = f( k

n
)±√εn.

9b4: similar to 9b1.

9c4: (a) D is closed in the space of all bounded functions; (b) try shifts of a
discontinuous derivative.
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