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9a Finite Taylor expansion

An infinitely differentiable function R — R need not be analytic. It has a
formal Taylor expansion, but maybe of zero radius of convergence, or maybe
converging to a different function. An example:

fl@y=e" forz>0, f(x)=0 forz<0.

9al Theorem. ' 2 If an infinitely differentiable function f : R — R is not a
polynomial then there exists z € R such that f(z) is irrational for all n.

Thus, 3z Vn f™(2) # 0.

The set of rational numbers may be replaced with any other countable
set.

We’ll prove the theorem via iterated Baire category theorem.

9a2 Lemma. If f is a polynomial on [a,b] and Vn f(b+¢,) = f(b) for some
e, — 0+ then f is constant on [a, b].

!Exercise 10.2.9 in book: B. Thomson, J. Bruckner, A. Bruckner, “Real analysis”,
second edition, 2008.

2The theorem:
Theorem: Let f(x) be C* on (¢, d) such that for every point z in the interval there exists
an integer N, for which f(V+)(x) = 0; then f(x) is a polynomial.

is due to two Catalan mathematicians:
F. Sunyer i Balaguer, E. Corominas, Sur des conditions pour qu'une fonction infiniment
dérivable soit un polynéme. Comptes Rendues Acad. Sci. Paris, 238 (1954), 558-559.
F. Sunyer i Balaguer, E. Corominas, Condiciones para que una funcién infinitamente
derivable sea un polinomio. Rev. Mat. Hispano Americana, (4), 14 (1954).

The proof can also be found in the book (p. 53):
W. F. Donoghue, Distributions and Fourier Transforms, Academic Press, New York, 1969.

I will never forget it because in an ”Exercise” of the ”Opposition” to became ”Full
Professor” 1 was posed the following problem:
What are the real functions indefinitely differentiable on an interval such that a derivative
vanish at each point?

Juan Arias de Reyna; see |Question 34059 on Mathoverflowl


http://mathoverflow.net/questions/34059

(=)
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Proof. We have f(™(b) = 0 for n = 1,2,... since otherwise f(b + ¢)
f(b) + cgk + o(g¥) for some k > 1 and ¢ # 0.

O

The same holds for f(a — ¢,), of course.
Assume that f is a counterexample to Theorem [9al]

Consider a (maybe empty) set Py of all maximal nondegenerate intervals
I C R such that f is a polynomial on /. Note that intervals of Ps are closed
and pairwise disjoint.

9a3 Lemma. The open set

Gp=|JInt1

IeP;
is dense (in R).
Proof. Closed sets
Fpp={z:f™x)=r} forreQandn=0,1,2,...

cover R. By (5b7), Uy, Int F,, ,. is dense. Clearly, f is a polynomial on each
interval contained in this dense open set. O

It follows that Py, treated as a totally (in other words, linearly) ordered
set, is dense (that is, if [, [, € Py, 1 < Iy then 3] € Py I} < I < ).
It may contain minimal and /or maximal element (unbounded intervals), but
the rest of Py, being an unbounded dense countable totally ordered set, is
order isomorphic to @ N (0,1) (the proof is similar to the proof of Lemma
2d4; so-called back-and-forth method).

Now we want to contract each interval of Py into a point. (We could
consider a topological quotient space. .. )

We take an order isomorphism ¢ : Py — Q between P; and one of
QnN(0,1), @nJ0,1), @n(0,1], @N[0,1], and construct an increasing 1 :
R — [0, 1] such that ¥(z) = ¢(I) whenever = € I. Clearly, such 1 exists and
is unique. It is continuous. The image ¥ (R) is one of (0, 1), [0, 1), (0, 1], [0, 1].
In every case ¢(R) is completely metrizable. Note that ¢~'(Q) = Usep, [,
and 1 is one-to-one on R\ Urep, 1.

We define E,, . C ¢Y(R) for r € Q and n =0,1,2,... as follows:

En,={z:¢ 7 (z) C F.,}.

9a4 Lemma. Each E, , is closed in ¢(R).
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Proof. Given xy > xy > ..., x € E,,, z; | = in ¥(R), we take ¢, €
Y4 (z1) C F,, and note that t; >ty > ..., t, Lt € v~ 1(z), f™(tx) = r for
all k, thus f(t) = r, that is, t € F,,..

If z is irrational then = € E,,, since ¢¥~!(z) = {t}.

If 2 is rational then ¢ ~'(z) = [s,1], and f™(-) = r on [s,¢] by Lemma
M (applied to f™).

The case x; 1T x is similar. O

9a5 Exercise. Each E, , is nowhere dense in 9 (R).
Prove it.

Now Theorem follows from the Baire category theorem (applied the
second time).

9a6 Corollary. If an infinitely differentiable function f : R¢ — R has only
finitely many non-zero partial derivatives at every point then f is a polyno-
mial.

Proof. Let d = 2 (the general case is similar).

By Theorem [9al] for every x € R the function f(z,-) : R — R is a
polynomial; similarly, each f(-,%) is a polynomial. Introducing the set A,, of
all x € R such that f(z,-) is a polynomial of degree < n we have A, 1T R,
therefore A, is infinite (moreover, uncountable) for n large enough. The
same holds for f(-,y) and B,,.

For x € A, the coefficients ag(x), ..., a,(x) of the polynomial f(z,-) are
linear functions of f(z,vo),..., f(x,y,) provided that yo,...,y, € B, are
pairwise different. Therefore these coefficients are polynomials (in z), of
degree < n.

We get a polynomial P : R? — R such that f(z,y) = P(xz,y) for z € A,
y € R. For every y € R two polynomials f(-,y) and P(-,y) coincide on the
infinite set A,,, therefore they coincide on the whole R. m

A very similar (and a bit simpler) argument gives an interesting purely
topological result.

9a7 Theorem. ! If [0, 1] is the disjoint union of countably many closed sets
then one of the sets is the whole [0, 1] (and others are empty).

Proof. (sketch). Assume the contrary: [0,1] = W, F,, F, # () are closed.
(Finitely many sets cannot do because of connectedness.) Then U, Int F,, is
dense in [0, 1].

Exercise 10:2.8 in “Real analysis”. Also Problem 13.15.3 in book: B. Thomson,
J. Bruckner, A. Bruckner, “Elementary real analysis”, second edition, 2008.
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Consider a (maybe empty) set P of all maximal nondegenerate intervals
I C [0,1] such that 3n I C F,. Note that intervals of P; are closed and
pairwise disjoint. The open set G = UjepInt I is dense in [0, 1], since it
contains U, Int F},.

It follows that P, treated as a totally ordered set, is dense. Thus, the set
C =10,1] \ G is perfect, with no interior (and in fact, homeomorphic to the
Cantor set).

As before, each F,, N C' is nowhere dense in C. (Hint: if an endpoint of
an interval I € P belongs to F,, N C then I C F},.)

It remains to apply the Baire category theorem (in the second time). [

9a8 Corollary. If the cube [0, 1]¢ is the disjoint union of countably many
closed sets then one of the sets is the whole [0, 1]¢ (and others are empty).

Proof. Let d = 2 (the general case is similar).

Assume the contrary: [0,1]* = W, F,, F, are closed.
By Theorem [9a7] each {z} x [0, 1] is contained in a single F,,. The same
holds for each [0, 1] x {y}. Thus, it is a single n. O

[ wonder, is it true for an arbitrary continuum (that is, a compact con-
nected metrizable space)?

9b Continuous and nowhere differentiable

9b1l Theorem. There exists a continuous function f : [0, 1] — R such that
for every = € (0,1), f is not differentiable at x.

We consider the complete metric space C10, 1] of all continuous f : [0, 1] —
R (separable, in fact). We define continuous functions ¢, : C[0,1] — R by

k kE—1
G -0

n n
Clearly, ¢, — 0 pointwise. What about the rate of convergence? We take
arbitrary €, — 0 and examine =-@,.

on(f) = ,in

1
9b2 Exercise. limsup —¢,(g) = oo for all f € C0,1].
n—oo,g—f €n
Prove it.

By Prop. 5b9,

(9b3) lim sup i(,pn(f) = 0

n—oo n



Tel Aviv University, 2013 Measure and category 79

for quasi all f € C[0, 1].
On the other hand, if f is differentiable at o € (0,1) then f(z)— f(x¢) =
O(|z — o]), that is,

ACVx € [0,1] |f(z) — f(zo)] < Clx — x0] -
Taking k such that &1 & € [zg — L 2+ 1] we get |f(£) — f(EL)] < 2.
Thus,
Vn on(f) < %
By , such f are a meager set, which proves Theorem m

9b4 Exercise. There exists a continuous function f : [0,1] — R such that
for every x € (0,1)

. 1
limsup | f(y) — f(x)|logloglog ly — =0

y—T—

. 1
tim sup | (y) — f()[logloglog = = o0

y—r+
Prove it.

However, |f(y) — f(x)| cannot be replaced with f(y) — f(z). If C >
f(1) — f(0) then there exists x € (0,1) such that

fly) = f2) _

lim sup
y—z+ y—x

and moreover, Sup,(, 1] % < C. Proof (sketch): choose b € (f(l) —

C, f(0)) and take the greatest « such that f(z) > Cz + b.
9¢ Differentiable and nowhere monotone

9c1 Theorem. ' There exists a differentiable function f : [0,1] — R such
that for every (a,b) C [0,1], f is not monotone on (a, b).

9c2 Lemma. ? There exists a strictly increasing differentiable function f :
[0,1] — R such that f’(-) = 0 on a dense set.

LC.E. Weil (1976) “On nowhere monotone functions”, Proc. AMS 56, 388-389. (Yes,
two pages!) See also Sect. 10.7.2 in “Real analysis”.

28. Marcus (1963) “Sur les dérivées dont les zéros forment un ensemble frontiere partout
dense”, Rend. Circ. Mat. Palermo (2) 12, 5-40.
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Proof. We'll construct a continuous strictly increasing surjective ¢ : [0, 1] —
[0,1] such that the inverse function f = ¢! : [0,1] — [0, 1] has the needed
properties. It is sufficient to ensure that (finite or infinite) derivative ¢'(-) €
(0, 00] exists everywhere (and never vanishes), and is infinite on a dense set.

A function

o) = '3

is strictly increasing (on R), with o/(0) = +o0 and o/(z) € (0, 00) for x # 0.
We introduce _ .
A = oy LR —al)

h#0 ha!(1)
(this continuous function vanishes on +oo; in fact, A = 4) and note that

alx + h) —ax)
ho! ()

€ (0,00)

(9¢3) <A

z1/3(a by _o a(l+2)—a
for all h # 0 and z (since for = # 0 it equals éxfﬂfgﬁ(l)(“) = (122/)(1) (1)).

Similarly to Sect. 5a we choose some a,,c, € (0,1) such that a, are
pairwise distinct, dense, and ) ¢, < co. The series

(o]
E cno(z — ay)

n=1

converges uniformly on [0, 1] (since |a(-)| < 1 and )" ¢, < 0o0). The series
Yo end(x — ay) converges (to a finite sum) for some = and diverges (to
+00) for other z (in particular, for z € {ay,as,...}). We Consider Bn(z) =

ke k(= ag) and () = B(2) = Bu(x) = 372,41 crar(w — ar). By (9c3),

(T + h) — v, (x > ,
ngY( })L 7<)§Acha(m—ak)

k=n+1

for all h # 0 and x. Thus (similarly to Sect. 5a)

z+h) = B(z)
h

<

n

Ry ene (2—an)

/ B
<
By, (x) < lllgljélf

< lim sup Blz+h) - B(z)
h—0 h

< B (x)+ A Z cpd! (x — ay),

k=n+1

therefore

= Z e (. — ay) € (0, 00]
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for all z.
(z)—B(0)

It remains to take g(z) = m. O

Do not think that '(-) = oo only on the countable set {aq,as,...}.
Amazingly, f'(z) = 0 for quasi all = € [0, 1] (and therefore §'(x) = oo for
quasi all € [0,1]). Here is why. By 5b2 and 5¢5, f’ is of Baire class 1, thus,
{z : f'(x) # 0} is an F, set, and {z : f'(x) = 0} is a G5 set;! being dense it
must be comeager (as noted before 5c2).

We introduce the space D of all bounded derivatives on (0, 1); that is, of
F’ for all differentiable F' : (0,1) — R such that F’ is bounded. We endow
D with the metric

p(f,9) = sup [f(z) —g(z)].
z€(0,1)
9c4 Exercise. (a) D is a complete metric space.
(b) D is not separable.
Prove it.

We consider a subspace Dg of all f € D such that f(z) = 0 for quasi all
x. As noted above, this happens if and only if f(-) = 0 on a dense set. By
9¢2] Dy is not {0}; moreover, for every = € (0,1) there exists f € Dy such

that f(x) # 0 (try f(az +b)).

9c5 Exercise. (a) Dy is a vector space; that is, a linear combination of two
functions of Dy is a function of Dy.

(b) Dy is a closed subset of D.
Prove it.

Given (a,b) C (0,1), the set
E.p={f € Dy :Vx € (a,b) f(x) >0}

is closed (evidently). Given f € E,;, we take z € (a,b) such that f(z) =0
and g € Dy such that g(x) > 0. Then f —eg € Dy and f —eg ¢ E,; for all
e > 0; thus, f is not an interior point of E,;. We see that £, is nowhere
dense. Similarly, —E,, = {f € Dy : Vz € (a,b) f(z) < 0} is nowhere dense.
It follows that quasi all functions of Dy change the sign on every interval.

Theorem is thus proved.

LA straightforward representation
fl(@)=0 <= VedéVh (Jh| <6 = [f(z+h)— f(z)| < elh))
gives only F, 5. Taking into account that f is differentiable we have another representation
f'(x)=0 <= Ve3dh (|| <e A |f(z+h)— f(z)| <elh|)
that gives Gj.
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Hints to exercises

: otherwise, some interval of Py is not maximal.

02 g(5) = f(5) /5.

Ob4t similar to QbIl

9c4: (a) D is closed in the space of all bounded functions; (b) try shifts of a
discontinuous derivative.
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