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10a Covering, packing, volume, and dimension

Covering numbers Nε(X) and packing numbersMε(X) (natural numbers or
∞) are defined for ε > 0 and a metric space X by1

Nε(X) = inf{|A| : ∀x ∈ X ∃a ∈ A ρ(x, a) < ε} ,
Mε(X) = sup{|B| : ∀b1, b2 ∈ B (b1 6= b2 =⇒ ρ(b1, b2) ≥ ε)} ;

here A,B run over all finite subsets of X, and | . . . | is the number of elements.

10a1 Lemma. M2ε(X) ≤ Nε(X) ≤Mε(X).

Proof. M2ε(X) ≤ Nε(X): we have a one-to-one mapB → A, since ρ(b1, a1) <
ε and ρ(b2, a2) < ε and b1 6= b2 imply a1 6= a2.
Nε(X) ≤ Mε(X): if Mε(X) < ∞, we take a maximal B and note that

it is a possible A.

10a2 Exercise. The following three conditions on a metric space X are
equivalent:

(a) ∀ε > 0 Nε(X) <∞;
(b) ∀ε > 0 Mε(X) <∞;
(c) every sequence (of points of X) has a Cauchy subsequence.

Prove it.

10a3 Corollary. The following three conditions on a complete metric space
X are equivalent:

(a) ∀ε > 0 Nε(X) <∞;
(b) ∀ε > 0 Mε(X) <∞;
(c) X is compact.

1Not equivalently, but equally well, one may use ρ(x, a) ≤ ε in concert with ρ(b1, b2) >
ε.
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Interestingly, it appears that (a) and (b) do not depend on the choice of
a complete metric on a (completely) metrizable space. (However, (0, 1) is
homeomorphic to R. . . )

A subset E of a metric space X is itself a metric space; thus, Nε(E),
Mε(E) are well-defined, and 10a1–10a3 apply. Compact subsets of Rn are a
notable special case. For a cube E ⊂ Rn it is easy to see that Nε(E) ≤ C/εn

and Mε(E) ≥ c/εn for some c, C ∈ (0,∞) (dependent on n but not E).
Using the inequality M2ε(E) ≤ Nε(E) we get

Nε(E) �Mε(E) � 1

εn
;

here α � β means that cα ≤ β ≤ Cα for some c, C ∈ (0,∞). The same
holds for every bounded set E ⊂ Rn with nonempty interior (in particular,
a ball). For such E we get

logNε(E)

log 1/ε
→ n ,

logMε(E)

log 1/ε
→ n as ε→ 0 + .

Accordingly, one defines the lower and upper Minkowski(-Bouligand) dimen-
sion1

dimM(E) = lim inf
ε→0+

logNε(E)

log 1/ε
, dimM(E) = lim sup

ε→0+

logNε(E)

log 1/ε
,

and if these are equal, the Minkowski dimension dimM(E) is equal to both.
(Equivalently, Mε(E) may be used.)

Now we turn to a bounded set E ⊂ Rn and Lebesgue measure of its closed
ε-neighborhood E+ε.

10a4 Lemma. For all ε > 0,

M2ε(E) ≤ m(E+ε)

Cnεn
≤ 2nNε(E) ,

where Cn is the volume of the n-dimensional unit ball.

Proof. First, Nε(E) = |A|, E ⊂ A+ε, thus E+ε ⊂ A+2ε and m(E+ε) ≤
Cn(2ε)n|A|.

Second, M2ε(E) = |B|, B ⊂ E, thus m(E+ε) ≥ Cnε
n|B|.

1Also “box (counting) dimension”, and (for the upper dimension) “entropy dimension”,
“Kolmogorov dimension”, “Kolmogorov capacity”. By the way, the well-known Hausdorff
dimension never exceeds the lower Minkowski dimension.
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10a5 Corollary. If dimM(E) exists, then

logm(E+ε)

log ε
→ n− dimM(E) as ε→ 0+ ;

and in every case,

n− dimM(E) = lim inf
ε→0+

logm(E+ε)

log ε
≤ lim sup

ε→0+

logm(E+ε)

log ε
= n− dimM(E) .

10b A space of compact sets

Given a metric space X, we denote by K(X) the set of all nonempty compact
subsets of X. For each K ∈ K(X) we introduce its distance function dK :
X → [0,∞) by

dK(x) = dist(x,K) = min
y∈K

ρ(x, y) .

Note that |dK(x) − dK(y)| ≤ ρ(x, y); K = {x : dK(x) = 0}; and K1 ⊂
K2 ⇐⇒ dK1 ≥ dK2 . Also, dK1∪K2 = min(dK1 , dK2), while the evident
inequality dK1∩K2 ≥ max(dK1 , dK2) is generally strict (even if K1 ∩K2 6= ∅).

We endow K(X) with the Hausdorff metric dH,

dH(K1, K2) = ‖dK1 − dK2‖ = sup
x∈X
|dK1(x)− dK2(x)| .

10b1 Exercise. (a) supx∈X
(
dK1(x)− dK2(x)

)
= maxx∈K2 dK1(x);

(b) dH(K1, K2) = max
(
maxx∈K2 dK1(x),maxx∈K1 dK2(x)

)
.

Prove it.

Denoting K+ε = {x : dK(x) ≤ ε} we have

dH(K1, K2) = min{ε : K1 ⊂ (K2)+ε ∧ K2 ⊂ (K1)+ε} .

Here is a metric-free description1 of the topology on K(X).

10b2 Exercise. The following two conditions on K,K1, K2, · · · ∈ K(X) are
equivalent:

(a) Kn → K;
(b) for every open U ⊂ X,

(b1) if K ⊂ U then Kn ⊂ U for all n large enough;
(b2) if K ∩ U 6= ∅ then Kn ∩ U 6= ∅ for all n large enough.

Prove it.

1So-called Vietoris topology on K(X).
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If two metrics on X are equivalent then the two corresponding Hausdorff
metrics on K(X) are equivalent. Thus, a metrizable space K(X) is well-
defined for every metrizable space X.

10b3 Exercise. If X is separable then K(X) is separable.
Prove it.

We return to a metric space X.

10b4 Exercise. Let K1, K2, · · · ∈ K(X), K1 ⊃ K2 ⊃ . . . , then dKn ↑ dK
where K = ∩nKn.

Prove it.

10b5 Exercise. Let K1, K2, · · · ∈ K(X) be such that the set K = Cl(K1 ∪
K2 ∪ . . . ) is compact; then

(a) dK = infn dKn ;
(b) lim infn dKn = dK∞ where K∞ = ∩n Cl(Kn ∪ Kn+1 ∪ . . . ) is the so-

called topological upper limit of Kn;
(c) K∞ ⊃ lim supnKn, and this inequality is generally strict.

Prove it.

10b6 Exercise. Let K1, K2, · · · ∈ K(X) and εn → 0. If X is complete then
the set ⋂

n

(Kn)+εn

is compact.
Prove it.

10b7 Proposition. If X is complete then K(X) is complete.

Proof. Given a Cauchy sequence K1, K2, · · · ∈ K(X), we take εn → 0 such
that dH(Kn, Kn+k) ≤ εn, then Kn+k ⊂ (Kn)+εn , therefore⋃

n

Kn ⊂
⋂
n

(K1 ∪ · · · ∪Kn)+εn .

The latter is compact by 10b6. Thus, Cl(∪nKn) is compact. By 10b5,
lim infn dKn = dK∞ . However, dKn are a Cauchy sequence; thus ‖dKn −
dK∞‖ → 0, that is, Kn → K∞.

10b8 Corollary. (a) If X is completely metrizable then K(X) is completely
metrizable;

(b) if X is Polish then K(X) is Polish.
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10c Dimensions of typical sets

10c1 Theorem. 1 Quasi all K ∈ K(Rn) satisfy

dimM(K) = 0 , dimM(K) = n .

This fact should be another manifestation of the phenomenon seen in
1e1(b). I wonder, is there a general theorem that implies both as special
cases?

10c2 Corollary. Quasi all K ∈ K(Rn) are null sets, and (therefore) nowhere
dense.

Strangely, small sets are the majority. . .
In order to avoid the question of continuity of m(K+ε) in K (for a fixed

ε) we introduce

fε(K) =
1

ε

∫ ε

0

m(K+a) da =

∫
Rn

(
1− 1

ε
dK

)+
dm.

If Km → K then dKm → dK uniformly, thus fε(Km) → fε(K) (since the
relevant part of Rn is bounded). It means that fε : K(Rn) → (0,∞) is
continuous.

By monotonicity,

1

2
m(K+ε/2) ≤

1

ε

∫ ε

0

m(K+a) da ≤ m(K+ε) ,

therefore(
1 +O

( 1

log 1/ε

)) logm(K+ε/2)

log(ε/2)
≤ log fε(K)

log ε
≤ logm(K+ε)

log ε
.

In combination with 10a5 it gives

log fε(K)

log ε
→ n− dimM(K) as ε→ 0+

if dimM(K) exists; and in every case,
(10c3)

n− dimM(K) = lim inf
ε→0+

log fε(K)

log ε
≤ lim sup

ε→0+

log fε(K)

log ε
= n− dimM(K) .

1P.M. Gruber (1989) “Dimension and structure of typical compact sets, continua and
curves”, Monatshefte für Mathematik 108, 149–164.
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Proof of Theorem 10c1. Finite K are dense in K(Rn) and are of Minkowski
dimension 0. Thus,

log fε(K)

log ε
→ n (as ε→ 0)

on a dense set. By 5b9,

lim sup
ε→0+

log fε(K)

log ε
≥ n (thus, = n)

for quasi all K ∈ K(Rn). By (10c3), dimM(K) = 0 for quasi all K. On the
other hand, sets of Minkowski dimension n are also dense (try finite unions
of balls; or even a ball plus a finite set). Thus,

log fε(K)

log ε
→ 0 (as ε→ 0+)

on a dense set. By 5b9 (again),

lim inf
ε→0+

log fε(K)

log ε
≤ 0 (thus, = 0)

for quasi all K ∈ K(Rn). By (10c3), dimM(K) = n for quasi all K.

10c4 Exercise. Quasi all K ∈ K(Rn) satisfy

∀U
(
K ∩ U 6= ∅ =⇒ dimM(K ∩ U) = n

)
,

where U runs over all open sets.
Prove it.

10c5 Corollary. Quasi all K ∈ K(Rn) are perfect sets.

By Theorem 10c1, quasi all K ∈ K(Rn) satisfy

∀α > 0 lim inf
ε→0+

m(K+ε)

εn−α
= 0 , lim sup

ε→0+

m(K+ε)

εα
=∞ .

On the other hand,

(10c6) m(K+ε)→ 0 ,
m(K+ε)

εn
→∞ (as ε→ 0+)

since m(K) = 0, and K is infinite (and m(E+ε)
εn

→ Cn|E| for finite E).
A more detailed analysis leads to a stronger result.
We recall the “anti-Egorov” phenomenon discussed in Sect. 7a (recall also

9b2) and give it a name.1

1Not a standard terminology.
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10c7 Definition. Let X be a completely metrizable space, and f1, f2, · · · :
X → (0,∞). We say that quasi everywhere

fn → 0 with nothing to spare

if {x : fn(x) → 0} is comeager, but {x : Anfn(x) → 0} is meager whenever
An →∞.

Similarly, we say that quasi everywhere

fn →∞ with nothing to spare

if {x : fn(x)→∞} is comeager, but {x : anfn(x)→∞} is meager whenever
an → 0.

(And the same for ε→ 0+ instead of n→∞).

10c8 Theorem. For quasi all K ∈ K(Rn),

m(K+ε)→ 0 (as ε→ 0+) with nothing to spare,

m(K+ε)

εn
→∞ (as ε→ 0+) with nothing to spare.

Proof. Convergence is already established, see (10c6); “nothing to spare” will
be proved. Using 10a4 (and 10a1) we reformulate it equivalently as follows:

Nε(K)→∞ (as ε→ 0+) with nothing to spare,

εnNε(K)→ 0 (as ε→ 0+) with nothing to spare.

The first relation. Let a(ε)→ 0; we have to prove that {K : a(ε)Nε(K)→
∞} is meager. It is sufficient to prove for arbitrary ε0 that the set S =
{K : ∀ε ≤ ε0 a(ε)Nε(K) ≥ 1} is nowhere dense. We’ll prove that a finite
K0 ∈ K(Rn) cannot belong to the closure of S; this is sufficient, since these
K0 are dense in K(Rn).

We take ε ≤ ε0 such that a(ε)|K0| < 1. Every K such that dH(K0, K) ≤ ε
satisfies Nε(K) ≤ |K0|, thus, a(ε)Nε(K) < 1. We see that S misses the
ε-neighborhood of K0.

The second relation. Let A(ε) → ∞; we have to prove that {K :
A(ε)εnNε(K) → 0} is meager. It is sufficient to prove for arbitrary ε0 that
the set S = {K : ∀ε ≤ ε0 A(ε)εnNε(K) ≤ 1} is nowhere dense. We’ll prove
that K0 ∈ K(Rn) with nonempty interior cannot belong to the closure of S;
this is sufficient, since these K0 are dense in K(Rn).

There exists c > 0 such that εnNε(K0) ≥ c for all ε. We take ε ≤ ε0
such that A(ε)c > 2n. Every K such that dH(K0, K) ≤ ε satisfies Nε(K) ≥
N2ε(K0), thus, A(ε)εnNε(K) > 1. We see that S misses the ε-neighborhood
of K0.
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In this sense,

εn � m(K+ε)� 1 and 1� Nε(K)� 1

εn

(as ε→ +0) with nothing to spare.

10d Besicovitch sets
By Besicovitch sets we mean planar compact sets
that contain unit line segments in every direction.
We want to minimize the area of such set. It was
conjectured that the deltoid is optimal, of area
π/8. Amazingly, the minimal area is zero!1

10d1 Exercise. The set B of all Besicovitch sets
is a closed subset of K(R2).
Prove it.

Deltoid. Its bound-
ary is {12eit + 1

4e−2it :
0 ≤ t ≤ 2π}.

Thus we may talk about typical Besicovitch sets.

10d2 Theorem. 2 Quasi all Besicovitch sets are null sets.

A spectacular manifestation of the tendency “small sets are the majority”!
On K(Rn), Lebesgue measure K 7→ m(K) is an upper semicontinuous

function. Moreover, K 7→ µ(K) is upper semicontinuous on K(X) for every
locally finite measure µ on X. Proof: K+ε ↓ K, therefore µ(K+ε) ↓ µ(K);
if µ(K) < a then µ(K+ε) < a for a small ε, and µ(K1) < a whenever
dH(K1, K) ≤ ε.

Thus, in order to prove Theorem 10d2 it is sufficient to prove that {K ∈
B : m(K) < ε} is dense in B for all ε.

We divide the set of all directions in two subsets: these closer to the x
axis, and to y axis. We have B = B1 ∩ B2 where B1 consists of sets that
contain unit line segment in every direction closer to the x axis, and B2

to y. It is sufficient to prove that {K ∈ B1 : m(K) < ε} is dense in B1,
since if K1 ∈ B1, K2 ∈ B2, m(K1) < ε, m(K2) < ε, then K1 ∪ K2 ∈ B,
m(K1∪K2) < 2ε and dH(K1∪K2, K) ≤ max

(
dH(K1, K), dH(K2, K)

)
(think,

why).
We’ll prove a stronger claim: quasi all sets of B1 are null sets.

1Some authors define Besicovitch sets as null sets with that property.
2T.W. Körner (2003) “Besicovitch via Baire”, Studia Math. 158, 65–78. See also

Sect. 4.5 in book: E.M. Stein and R. Shakarchi, “Functional analysis”, Princeton 2011.
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To this end it is sufficient to prove that

(10d3) m
(
K ∩ ([a, a+ ε]× R)

)
< Aε2

for quasi all K ∈ B1, whenever a ∈ R, ε > 0; here A is some absolute
constant.

Given a and ε, we have an open set of such K ∈ B1, and we’ll prove
that this open set is dense in B1. Given K ∈ B1 and N , we seek K1 ∈ B1

satisfying (10d3) and dH(K1, K) = O(1/N).1

We take directions d1, . . . , dN , closer to the x axis, that are O(1/N)-
dense among all such directions. For each i = 1, . . . , N we choose a unit
line segment Si ⊂ K in the direction dk. Rotating Si by angles ±O(1/N)
around one of its points (specified below) we get S̃i ∈ K(R2) such that the
set S̃ = S̃1 ∩ · · · ∪ S̃N belongs to B1 and S̃ ⊂ K+O(1/N).

We choose the center of the rotation as the point of Si most close to the
line {a + ε

2
} × R (be it on the line or not). Then m(S̃i) = O(ε2/N) (think,

why), thus m(S̃) = O(ε2). It remains to take K1 = S̃ ∪K0 where K0 ⊂ K is
a compact null set (even finite, if you like) such that K ⊂ A+O(1/N); indeed,
then K ⊂ (K1)+O(1/N) and K1 ⊂ K+O(1/N).

Hints to exercises

10a2: (c)=⇒(a): if no A is finite then some B is infinite; (a)=⇒(c): if A is
finite then some ε-ball contains xn for infinitely many n.

10b3: try finite (compact) sets.

10b6: use 10a3.

10c4: use a countable basis.

10d1: Kn → K∞.

Index

Besicovitch set, 90

Hausdorff metric, 85

Minkowski dimension, 84

nothing to spare, 89

dH, 85
dK , 85
K∞, 86
K(X), 85, 86
Mε, 83, 84
Nε, 83, 84

1All O(1/N) are absolute (I mean, with absolute constants).


	Typical compact sets
	Covering, packing, volume, and dimension
	A space of compact sets
	Dimensions of typical sets
	Besicovitch sets
	Hints to exercises
	Index

	Index

