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11a Divergence of Fourier series1

A normed space X may be defined as a vector2 space over R or C, endowed
with a metric ρ such that

ρ(x, y) = ρ(x+ z, y + z) for all x, y, z ∈ X ,

ρ(cx, cy) = |c|ρ(x, y) for all x, y ∈ X and c ∈ R or C .

The norm is then ‖x‖ = ρ(x, 0), of course.
A Banach space is a complete normed space.
A linear functional α : X → R or C is continuous if and only if it is

bounded, that is, of finite norm

‖α‖ = sup
‖x‖≤1

|α(x)| <∞ .

Here is the uniform boundedness principle.

11a1 Theorem. (Banach-Steinhaus).
If α1, α2, . . . are linear3 functionals on a Banach space X such that

supn ‖αn‖ =∞ then supn |αn(x)| =∞ for quasi all x ∈ X.

Proof. Follows easily from 5b9.

We consider the unit circle T = {z ∈ C : |z| = 1} = {eiϕ : ϕ ∈ R} with a
probability measure µ : A 7→ 1

2π
m{ϕ ∈ [−π, π] : eiϕ ∈ A}, the Hilbert space

L2(T) = L2(T, µ), and the Banach space C(T) of all continuous functions
f : T→ C with the norm ‖f‖ = maxz∈T |f(z)|.

1See Sect. 4.2.1 in book: E.M. Stein and R. Shakarchi, “Functional analysis”, Princeton
2011. Also, Sect. 1 in: J.-P. Kahane (2000) “Baire’s category theorem and triginometric
series”, Journal d’Analyse Mathématique 80 143–182.

2In other words, linear.
3Continuous, I mean.
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11a2 Exercise. Given g ∈ L2(T), define a linear functional α on L2(T) by
α(f) =

∫
T fg dµ and a linear functional β on C(T) by the same formula:

β(f) =
∫
T fg dµ. Prove that

(a) ‖α‖ =
√∫

T |g|2 dµ;

(b) ‖β‖ =
∫
T |g| dµ.

The functions z 7→ zk for k ∈ Z are a well-known orthonormal basis in
L2(T);

f =
∑
k∈Z

αk(f)(z 7→ zk) , αk(f) = 〈f, z 7→ zk〉 =

∫
T
f(z)zk µ(dz)

for f ∈ L2(T); the series converges in L2.

Can we say that f(z) =
∑

k∈Z αk(f)zk?

First of all, f(z) is ill-defined for f ∈ L2, but well-defined for f ∈ C(T);
and αk(f) are well-defined for f ∈ C(T).

11a3 Proposition. ∀∗f ∈ C(T) ∀∗z ∈ T supn
∣∣∑n

k=−n αk(f)zk
∣∣ =∞.

Proof. Functions (f, z) 7→ αk(f)zk are continuous on C(T) × T, therefore
{(f, z) : supn | . . . | =∞} ∈ BP(C(T)×T). By the Kuratowski-Ulam theorem
it is sufficient to prove that ∀∗z ∈ T ∀∗f ∈ C(T) supn | . . . | =∞.

We reduce the general z to z = 1 using rotational symmetry, as follows.
Rotations Rw : L2(T)→ L2(T) defined for w ∈ T by Rw(f) : z 7→ f(wz)

are unitary operators, and Rw(z 7→ zn) = wn(z 7→ zn), thus, αn(Rwf) =
wnαn(f). Taking into account that

n∑
k=−n

αk(f)zk =
n∑

k=−n

αk(Rzf)

we see that it is sufficient to prove the following:

∀∗f ∈ C(T) sup
n

∣∣∣∣ n∑
k=−n

αk(f)

∣∣∣∣ =∞ .

We have

n∑
k=−n

αk(f) =
n∑

k=−n

〈f, z 7→ zk〉 =

〈
f,

n∑
k=−n

(z 7→ zk)

〉
,

and
n∑

k=−n

zk =
zn+0.5 − z−n−0.5

z0.5 − z−0.5
=

sin(n+ 0.5)ϕ

sin 0.5ϕ
for z = eϕ ;
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using 11a2(b),

‖α−n + · · ·+ αn‖ =

∫ ∣∣∣∣zn+0.5 − z−n−0.5

z0.5 − z−0.5

∣∣∣∣µ(dz) =

=
1

2π

∫ π

−π

∣∣∣∣sin(n+ 0.5)ϕ

sin 0.5ϕ

∣∣∣∣dϕ =
1

π

∫ π

0

| . . . | dϕ .

Due to 11a1 it remains to prove that
∫ π
0
| . . . |dϕ→∞ as n→∞. We have∫ π

0

∣∣∣∣sin(n+ 0.5)ϕ

sin 0.5ϕ

∣∣∣∣dϕ ≥ ∫ π

0

∣∣∣sin(n+ 0.5)ϕ

0.5ϕ

∣∣∣dϕ =

= 2

∫ (n+0.5)π

0

| sin t|
t

dt −−−→
n→∞

2

∫ ∞
0

| sin t|
t

dt ≥ 2
∞∑
n=1

1

πn

∫ π

0

sin t dt =∞ .

We see that the Fourier series fails to converge pointwise. However,
Cesàro summation helps.

11a4 Proposition. ∀f ∈ C(T) ∀z ∈ T 1
N+1

∑N
n=0

∑n
k=−n αk(f)zk → f(z)

as N →∞.

Proof. As before, by rotation we reduce the general z to z = 1; it is sufficient
to prove that

1

N + 1

N∑
n=0

n∑
k=−n

αk(f)→ f(0) .

In terms of functions

Sn(z) =
n∑

k=−n

zk

we have

1

N + 1

N∑
n=0

n∑
k=−n

αk(f) =
1

N + 1
〈f, S0+· · ·+SN〉 =

1

N + 1

∫
T
(S0+· · ·+SN)f dµ .

Luckily,

S0(z) + · · ·+ S2n(z) = S2
n(z) for all z ∈ T and n = 0, 1, 2, . . .

(think, why).1 We may restrict ourselves to N ∈ 2Z, since∣∣∣∣ 1

N + 1
〈f, SN〉

∣∣∣∣ ≤ 1

N + 1
‖f‖C(T)

1

2π

∫ π

−π

∣∣∣∣sin(N + 0.5)ϕ

sin 0.5ϕ

∣∣∣∣dϕ ,
1For n = 1 it means, z0 +(z−1 +z0 +z1)+(z−2 +z−1 +z0 +z1 +z2) = (z−1 +z0 +z1)2.
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and∫ π

−π

∣∣∣∣sin(N + 0.5)ϕ

sin 0.5ϕ

∣∣∣∣dϕ ≤ 2

∫ π

0

1

sin 0.5ϕ
min

(
1, (N + 0.5)ϕ

)
dϕ ≤

≤ 2

∫ 1/(N+0.5)

0

(N + 0.5)ϕ

sin 0.5ϕ
dϕ+2

∫ π

1/(N+0.5)

1

sin 0.5ϕ
dϕ = O(1)+O(logN) = o(N) .

We turn to N = 2n ∈ 2Z:

1

2n+ 1

∫
T
(S0 + · · ·+ S2n)f dµ =

∫
T

S2
n

2n+ 1
f dµ .

Noting that
∫
T

S2
n

2n+1
dµ = 1 (for two reasons. . . ), we introduce probability

measures µn on T by

(11a5)
dµn
dµ

=
S2
n

2n+ 1
, that is, µn(A) =

∫
A

S2
n

2n+ 1
dµ ,

and note that µn(T \ U)→ 0 as n→∞ whenever U is a neighborhood of 1,
since

1

2n+ 1
S2
n(eiϕ) =

1

2n+ 1

(
sin(n+ 0.5)ϕ

sin 0.5ϕ

)2

≤ 1

2n+ 1

1

sin2 0.5ϕ
.

It follows easily that
∫
f dµn → f(0) for all f ∈ C(T).

11a6 Exercise. The convergence in Prop. 11a4 is uniform in z ∈ T.
Prove it.

11b Decay of Fourier coefficients1

On the unit circle T (with µ as in 11a) we consider the Banach space L1(T) =
L1(T, µ) of all (equivalence classes of) Lebesgue integrable functions, with
the norm ‖f‖ =

∫
T |f | dµ. We note that L2(T) is embedded into L1(T) as

a dense subset, and the linear functionals αk (the Fourier coefficients, as in
11a) extend by continuity to L1(T); still,

αk(f) =

∫
T
f(z)zk µ(dz) for f ∈ L1(T) .

The linear operator
α : f 7→

(
αk(f)

)
k∈Z

1See Sect. 4.3.1 in Stein and Shakarchi.
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maps L1(T) to the (nonseparable) Banach space l∞(Z) of all bounded func-
tions on Z (with the supremum norm), and is continuous; moreover, ‖αf‖ ≤
‖f‖.

Seeking the inverse operator we introduce operators βn, γn : l∞(Z) →
L1(T) by

βn(a) : z 7→
n∑

k=−n

a(k)zk ; γn(a) =
β0(a) + · · ·+ βn(a)

n+ 1
.

Clearly, βn(l∞(Z)) ⊂ C(T) ⊂ L1(T), and the same holds for γn. By 11a3,

∀∗f ∈ C(T) ∀∗z ∈ T sup
n
|βn(α(f))| =∞ .

By 11a6,
∀f ∈ C(T) γn(α(f))→ f in C(T) .

Also,
α(L2(T)) ⊂ l2(Z) ,

and l2(Z) is contained in the (closed) subspace c0(Z) ⊂ l∞(Z) of all a such
that a(k) → 0 as k → ±∞. It follows by continuity that α(L1(T)) is con-
tained in c0(Z), which is a well-known Riemann-Lebesgue lemma:

∀f ∈ L1(T) αk(f)→ 0 as k → ±∞ .

11b1 Proposition. (a) ∀f ∈ L1(T) γ2n(α(f)) −→
n
f (in L1(T));

(b) For every a ∈ c0(Z), a belongs to α(L1(T)) if and only if γ2n(a)
converge (as n→∞) in L1(T).

In this sense, limn γ2n = α−1 : α(L1(T))→ L1(T).

11b2 Proposition. α(L1(T)) is a meager subset of c0(Z).

11b3 Lemma. γ2n(α(f)) : z 7→
∫
T f(zw)µn(dw).

Proof.

γ2n(α(f)) : z 7→ 1

2N + 1

2N∑
n=0

n∑
k=−n

αk(f)zk =
1

2N + 1

2N∑
n=0

n∑
k=−n

αk(Rzf) =

=

〈
Rzf,

S2
N

2N + 1

〉
=

∫
T
(Rzf)(w)µN(dw) =

∫
T
f(zw)µN(dw) .
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11b4 Lemma. ‖γ2n(α(f))‖ ≤ ‖f‖. (Here and below norms are taken in
L1.)

Proof. Using 11b3 and Tonelli’s theorem,

‖γ2n(α(f))‖ =

∫
T
µ(dz)

∣∣∣∣ ∫
T
µn(dw) f(zw)

∣∣∣∣ ≤ ∫
T
µ(dz)

∫
T
µn(dw) |f(zw)| =

=

∫
T
µn(dw)

∫
T
µ(dz) |f(zw)| =

∫
T
µn(dw) ‖Rwf‖ = ‖f‖ .

Proof of Prop. 11b1. Item (a).
For every ε > 0 there exists g ∈ C(T) such that ‖g − f‖L1(T) ≤ ε. We

know that γ2n(α(g))→ g in C(T), the more so, in L1(T). Using 11b4,

‖γ2n(α(f))− f‖ ≤ ‖γ2n(α(f))− γ2n(α(g))‖+ ‖γ2n(α(g))− g‖+ ‖g− f‖ ≤
≤ ‖γ2n(α(g))− g‖+ 2ε .

Thus, lim supn ‖γ2n(α(f))− f‖ ≤ 2ε for all ε.
Item (b).
First, by Item (a), a = α(f) implies γ2n(a) = γ2n(α(f))→ f .
Second, if γ2n(a)→ f then

αk(f) = lim
n
αk(γ2n(a)) = lim

n

αk(β0(a)) + · · ·+ αk(β2n(a))

2n+ 1
=

= lim
n

(2n− |k|+ 1)a(k)

2n+ 1
= a(k)

for all k; thus, a = α(f) ∈ α(L1(T)).

For proving 11b2 we need a bit stronger form of the Banach-Steinhaus
theorem.

11b5 Exercise. Let X, Y be Banach spaces, and Tn : X → Y linear1 oper-
ators such that supn ‖Tn‖ =∞. Then supn ‖Tnx‖ =∞ for quasi all x ∈ X.

Prove it.

Proof of Prop. 11b2. By 11b1(b) it is sufficient to prove that ∀∗a ∈ c0(Z)
supn ‖γ2n(a)‖ = ∞. By 11b5 it is sufficient to prove that supn ‖γ2n‖ = ∞.
We introduce an ∈ c0(Z) by

an(k) =

{
1 if |k| ≤ n,

0 otherwise,

1Continuous, I mean.
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note that βn(am) = Smin(m,n) (here Sn(z) =
∑n

k=−n z
k, as in Sect. 11a) and

get

‖γm+k(am)‖ =

∥∥∥∥β0(am) + · · ·+ βm+k(am)

m+ k + 1

∥∥∥∥ =

∥∥∥∥S0 + · · ·+ Sm + kSm
m+ k + 1

∥∥∥∥ −→k ‖Sm‖ ,
thus,

sup
n
‖γ2n(am)‖ ≥ ‖Sm‖ ;

sup
n
‖γ2n‖ ≥ sup

n

‖γ2n(am)‖
‖am‖

= sup
n
‖γ2n(am)‖ ≥ ‖Sm‖

for all m. Finally,

‖Sm‖ =
1

π

∫ π

0

∣∣∣∣sin(n+ 0.5)ϕ

sin 0.5ϕ

∣∣∣∣ dϕ→∞ as m→∞ ,

as was shown in the end of the proof of 11a3.

Instead of the “uniform boundedness principle” we could use the “bounded
inverse theorem” or a more general “open mapping theorem” when proving
11b2.

11b6 Theorem. (“Bounded inverse theorem”)
Let X, Y be Banach spaces and T : X → Y a linear1 operator. If T is

bijective then T−1 is continuous (in other words, T is a homeomorphism).

A continuous bijection between compact metrizable spaces is well-known
to be a homeomorphism. An infinite-dimension Banach space cannot be even
σ-compact. Amazingly, completeness and linearity (together) can sometimes
replace compactness!

11b7 Theorem. (Banach-Schauder, “Open mapping theorem”)
Let X, Y be Banach spaces and T : X → Y a linear operator. Then T (X)

is either a meager subset of Y , or the whole Y .2 In the latter case T is open
(in other words, gives a homeomorphism between Y and the quotient space
X/T−1(0)).

Clearly, 11b7 implies 11b6. And 11b7 follows easily from (the Baire cat-
egory theorem and) a wonderful lemma.

1Continuous, I mean.
2Thus, T (X) ∈ BP(Y ) always. By the way, a continuous image of a Polish space (in

another Polish space) has the Baire property (since it is analytic). However, the Banach
space X need not be separable.
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11b8 Lemma. Let X, Y be Banach spaces and T : X → Y a linear operator.
If T (BX) is dense in BY then T (BX) contains BY . Here BX = {x : ‖x‖ <
1} ⊂ X and BY = {y : ‖y‖ < 1} ⊂ Y .

Proof. Let y ∈ BY and ε ∈ (0, 1). We take x0 ∈ BX such that ‖y0 − y‖ < ε
where y0 = Tx0. Then we take x1 ∈ BX such that∥∥∥∥y0 − yε

− y1
∥∥∥∥ < ε where y1 = Tx1 .

We get ‖y − (y0 + εy1)‖ < ε2. Now we take x2 ∈ BX such that∥∥∥∥y − (y0 + εy1)

ε2
− y2

∥∥∥∥ < ε where y2 = Tx2 ,

get ‖y−(y0+εy1+ε
2y2)‖ < ε3, and so on. Finally, x = x0+εx1+ε

2x2+. . . and
Tx = y0+εy1+ε2y2+· · · = y. We have (1−ε)‖x‖ < 1, thus (1−ε)y ∈ T (BX)
whenever ‖y‖ < 1 and ε ∈ (0, 1). Every point of BY is such (1− ε)y.

11c Non-continuation of holomorphic functions1

Recall that a holomorphic2 function on an open disk U = {z ∈ C : |z− z0| <
r} is (according to one of several equivalent definitions) a function f : U → C
of the form

f(z) =
∞∑
n=0

an(z − z0)n

where an ∈ C and the series converges for all z ∈ U . Then an = 1
n!
f (n)(z0),

of course. A holomorphic function on an open set U ⊂ C may be defined
as a function U → C holomorphic on every open disk contained in U . If
U, V ⊂ C are open, f : U ∪ V → C and f |U , f |V are holomorphic then f is
holomorphic. The same holds for any union of open sets (finite or not).

If the radius of convergence of the series
∑

n
1
n!
f (n)(0)zn is equal to 1

then f cannot be extended from D = {z : |z| < 1} to (a holomorphic
function on) any (1 + ε)D; but it does not mean that f cannot be extended
to some D ∪ (eiϕ + εD). If for some r ∈ (0, 1) the radius of convergence of
the series

∑
n

1
n!
f (n)(reiϕ)(z − reiϕ)n exceeds 1 − r then f extends to some

D ∪ (reiϕ + (1 − r + ε)D); the latter contains some neighborhood of eiϕ. If
this never happens (for a given f), that is, the radius of convergence of the
series

∑
n

1
n!
f (n)(z0)(z − z0)n equals 1− |z0| for all z0 ∈ D, one says that the

1See Sect. 3 in Kahane.
2In other words, complex analytic.
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circle ∂D = {z : |z| = 1} is a natural boundary for f . In this case f cannot
be extended to any D ∪ (eiϕ + εD).

The so-called disk algebra is the set A(D) of all continuous functions
f : D → C such that f |D is holomorphic. Endowed with the norm ‖f‖ =
maxz∈D |f(z)|, A(D) is a Banach space (separable).

11c1 Theorem. For quasi all f ∈ A(D) the circle ∂D is the natural bound-
ary.

Proof. The radius of convergence of the series
∑

n
1
n!
f (n)(z0)(z − z0)

n is a
continuous (moreover, Lip(1)) function of z0, since z1 + rD ⊃ z2 + (r − ε)D
whenever |z1 − z2| ≤ ε. Thus, points z0 ∈ D such that the radius exceeds
1− |z0| are an open set. In order to prove that it is empty it is sufficient to
prove that it contains no point of a given dense countable set. Therefore it
is sufficient to prove for a given z0 that the radius does not exceed 1 − |z0|
for quasi all f .

If the radius exceeds 1− |z0| then

sup
n

1

n!
|f (n)(z0)|(1− |z0|+ ε)n <∞

for some ε > 0. We introduce linear functionals αn on A(D) by

αn(f) =
1

n!
f (n)(z0)(1− |z0|+ ε)n ;

by Theorem 11a1 it is sufficient to prove that supn ‖αn‖ =∞.
We take δ < ε, define f ∈ A(D) by

f(z) =
1

z − z1
, z1 = (1 + δ)

z0
|z0|

and observe that

f (n)(z) = ± n!

(z − z1)n+1
, |αn(f)| = (1− |z0|+ ε)n

|z0 − z1|n+1
= const·

(1− |z0|+ ε

1− |z0|+ δ

)n
;

clearly, |αn(f)| → ∞, thus ‖αn‖ → ∞.



Tel Aviv University, 2013 Measure and category 101

Hints to exercises

11a2: (b) C(T) is dense in L1(T); try the function sgn g.

11a6: f is uniformly continuous.

11b5: either generalize the proof of 11a1, or alternatively, choose linear func-
tionals αn on Y such that ‖αn‖ ≤ 1 and ‖αn ◦ Tn‖ ≥ 1

2
‖Tn‖.
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