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11a Divergence of Fourier series

A normed space X may be defined as a vector? space over R or C, endowed
with a metric p such that
ple,y) =plx+ z,y+2) foralzy ze X,
plex,cy) = |c|p(x,y) forall z,y € X and ce Ror C.
The norm is then ||z|| = p(z,0), of course.
A Banach space is a complete normed space.

A linear functional a : X — R or C is continuous if and only if it is
bounded, that is, of finite norm

lafl = sup |a(z)] < oo.
Jall <1

Here is the uniform boundedness principle.

11al Theorem. (Banach-Steinhaus).

If oy, s,... are linear® functionals on a Banach space X such that
sup,, ||a,|| = oo then sup,, |, (z)| = oo for quasi all z € X.
Proof. Follows easily from 5b9. O

We consider the unit circle T = {z € C: |z| = 1} = {e!¥ : ¢ € R} with a
probability measure p : A — s=m{p € [, 7] : ¢'¥ € A}, the Hilbert space
Ly(T) = Lo(T, i), and the Banach space C(T) of all continuous functions
f: T — C with the norm || f|| = max,er | f(2)]

1See Sect. 4.2.1 in book: E.M. Stein and R. Shakarchi, “Functional analysis”, Princeton
2011. Also, Sect. 1 in: J.-P. Kahane (2000) “Baire’s category theorem and triginometric
series”, Journal d’Analyse Mathématique 80 143-182.

2Tn other words, linear.

3Continuous, I mean.
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11a2 Exercise. Given g € Lo(T), define a linear functional « on Lo(T) by
a(f) = Jp fgdp and a linear functional § on C(T) by the same formula:

B(f) = J; fgdp. Prove that
() ol = 4/ Jr lgl* dps;
(b) 181 = Jr lgl dpe.

The functions z — z* for k € Z are a well-known orthonormal basis in
Ly(T);

=Y a2, ) =tz ) = [ )

for f € Lo(T); the series converges in L.

Can we say that f(z) = >, ., ak(f)2"?
First of all, f(z) is ill-defined for f € Lo, but well-defined for f € C(T);
and ay(f) are well-defined for f € C(T).

11a3 Proposition. V*f € C(T) V*2 € T sup, | >_p__, au(f)z"| = o0.

Proof. Functions (f,z) — ax(f)zF are continuous on C(T) x T, therefore
{(f,2) :sup,, |...| =00} € BP(C(T)xT). By the Kuratowski-Ulam theorem
it is sufficient to prove that V*z € T V*f € C(T) sup,, |...| = oc.
We reduce the general z to z = 1 using rotational symmetry, as follows.
Rotations R, : Lo(T) — Ly(T) defined for w € T by R,(f) : z — f(wz)
are unitary operators, and R,(z — 2") = w"(z — 2z"), thus, a,(R,f) =
w™a,(f). Taking into account that

n n

Yo a(f)F =) a(R.f)

k=—n k=—n

we see that it is sufficient to prove the following:

V' f e C(T) sup

k=—n

We have

> alf) = Y Ao = (1.3 ),

k=—n k=—n k=—n
and

n n+05 _ ,—n—0.5 -

Z b ? — 2 :s1n(?1+0.5)30 for 2 = ¢
205 — 2705 sin 0.5¢
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n+0.5 __Z—n—05

05 _ ,—05
1 iy
2T

using [11a2|(b),
: pu(dz) =

o -+ anll = [
sin(n +0.5)¢ / N
sin 0.5¢p

Due to it remains to prove that fo |...|dp = oo as n — co. We have
sin(n + 0.5)<p’

/7: sin(n + 0.5)¢ 'd(p . /7r
0 0 0.5¢

sin 0.5¢p
(n+05)7r : t [e.e] : t oo 1 s

]

We see that the Fourier series fails to converge pointwise. However,
Cesaro summation helps.

11a4 Proposition. Vf € C(T) Vz € T 5 2520 S ar(f)2F = f(2)
as N — oo.

Proof. As before, by rotation we reduce the general z to z = 1; it is sufficient

to prove that
N +1 Z Z ax(f) = J0)

n=0 k=—n
In terms of functions .

Sn(z) = Z 2k

k=—n
we have
L 1
- du .

NHnZOan Sk 4w} = N+1/T(So+ +Sx)f du
Luckily,

So(2) 4+ -+ Son(2) = S2(2) forallz€ Tandn=0,1,2,...
(think, why).! We may restrict ourselves to N € 2Z, since

1 sin(INV 4+ 0.5)¢
N+1 sin 0.5¢ ’

™

Frilfleoss |

For n = 1it means, 20+ (271 +20+21) + (272 4+ 271+ 20+ 21 +22) = (27120 4 21)2,

(f,5n)| <
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and
T |sin(N 4 0.5)¢ /” ‘
— 5 |dp <2 1, (N +0.5)p)dp <
/_TF sin O5(p ’ = 0 sin 0590 mln( ) ( + )90) Y =
1/(N+0.5) (N+05)SO T 1
52/ Earwo d90+2/ . dp = O(1)+O0(log N) = o(N).
0 Sln0'590 1/(N40.5) Sln0.590 ( ) ( ) ( )

We turn to N = 2n € 27Z:
! /(s+ + Som)f d —/ i 4
m 41 )0 ) SR = o 1

Noting that fT %du = 1 (for two reasons...), we introduce probability
measures (i, on T by

dyy, S2 S2
11a5 Hn _ _Pn that is, j,(A) = "y,
(11a5) = hatis, (4 /AQH1 "

and note that p,(T\ U) — 0 as n — oo whenever U is a neighborhood of 1,
since

. 2
1 S2(ci¥) = 1 Sln(?”b +0.5)¢ < 1 ' 21 ‘
2n +1 2n+1 sin 0.5¢ 2n + 1sin” 0.5¢
It follows easily that [ fdu, — f(0) for all f € C(T). O

11a6 Exercise. The convergence in Prop. is uniform in z € T.
Prove it.

11b Decay of Fourier coefficients!

On the unit circle T (with  as in[11a)) we consider the Banach space L (T) =
Lq(T, i) of all (equivalence classes of) Lebesgue integrable functions, with
the norm || f|| = [;|f]dp. We note that Ly(T) is embedded into L (T) as
a dense subset, and the linear functionals ay, (the Fourier coefficients, as in

11al) extend by continuity to Ly (T); still,

on(f) = [ JEFude) for f € La(T).

The linear operator

a: f (ar(f))rez

1See Sect. 4.3.1 in Stein and Shakarchi.
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maps L1(T) to the (nonseparable) Banach space [ (Z) of all bounded func-
tions on Z (with the supremum norm), and is continuous; moreover, ||af| <

Inals

Seeking the inverse operator we introduce operators S,, v, : lo(Z) —
LI(T) by

Bo(a) + -+ Bnla) .

Bula) 2 Y alk)hs qula) = 2O

k=—n

Clearly, B,(lo(Z)) C C(T) C Ly(T), and the same holds for ~,. By

VfeC(T) V2 eT sup|Bu(a(f))] = oo

By [[Ta6]
Vf e C(T) v(a(f)) — fin C(T).

Also,
a(Ly(T)) C 1x(Z),

and [3(Z) is contained in the (closed) subspace ¢y(Z) C l(Z) of all a such
that a(k) — 0 as k — Foo. It follows by continuity that «(L:(T)) is con-
tained in ¢y(Z), which is a well-known Riemann-Lebesgue lemma:

Ve Li(T) ap(f) >0 ask — +oo.

11b1 Proposition. (a) Vf € Li(T) va.(a(f)) = f (in Ly(T));

(b) For every a € cyo(Z), a belongs to a(Li(T)) if and only if ~2,(a)
converge (as n — o00) in Ly (T).

In this sense, lim, y2, = o' : a(Ly(T)) — Ly (T).
11b2 Proposition. a(L;(T)) is a meager subset of ¢y(Z).
11b3 Lemma. vo,(a(f)) : 2 = [ f(zw)p,(dw).

Proof.

n n

1 2N i 1 2N
n(a(f) 20 i D0 > (D = gy 20 D anlBef) =

- <RZ f, %{J :Z(sz)(w) pun (dw) T: /T :J: (nzw)uzv(d’w)-

[]
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11b4 Lemma. [|ye,(a(f))]| < ||f|l. (Here and below norms are taken in
Ly.)

Proof. Using and Tonelli’s theorem,

anlal)l = [ uta)| [ un(dw)f(zw)‘ < [ utd2) [ ufaw) )] =

= [ mtaw) [ )15 = [ o) 17 = 11
]

Proof of Prop. [1101]. Ttem (a).
For every € > 0 there exists g € C(T) such that ||g — f||z,m) < e. We

know that o, (a(g)) — ¢ in C(T), the more so, in Li(T). Using |11b4}

[72n(a(f)) = FII < [r2n(e(f)) = v2n (@)l + [[72n(e(9)) — gll + llg — fI| <
< [v2n(alg)) — gl + 2.

Thus, lim sup,, ||y2n(a(f)) — f]| < 2¢ for all €.
Item (b).
First, by Item (a), a = a(f) implies y2,(a) = Yon(a(f)) — f.
Second, if o, (a) — f then

ar(f) = lim ag(y2n(a)) = lim ag(fola)) + - - + a(Ban(a)) _

. (2n— k| + 1)a(k)
:1 pu—
. o+ 1 alk)
for all k; thus, a = a(f) € a(L1(T)). O

For proving we need a bit stronger form of the Banach-Steinhaus
theorem.

11b5 Exercise. Let X,Y be Banach spaces, and T}, : X — Y linear!' oper-
ators such that sup,, |7,,]| = co. Then sup,, ||T,z| = oo for quasi all z € X.
Prove it.

Proof of Prop. [11b2 By [L1bl|b) it is sufficient to prove that V*a € c¢y(Z)
sup,, ||72n(a)]| = oco. By [11b5| it is sufficient to prove that sup,, ||72.| = oc.
We introduce a,, € ¢y(Z) by

1 <
0 (k) = {1 if |k| < n,

0 otherwise,

LContinuous, I mean.
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note that B,(am) = Smin(mn) (here S,(z) = >"p__ z¥, as in Sect. [11a)) and
get

Bo(am) + - - + Btk (@) So+ -+ Sy + kS,

m m)|| — = — Sm )
sl = | Lt I | s
thus,

sup [|vzn(am)|| 2 [|Smll;
720 (@m) ||
sup [|7zn || = P b & [172n (@) || = [|Sm]|
for all m. Finally,
1 [™]|si 0.5
||Sm||:_/ —sm(?z—i— )Sp‘dga—M)o as m — 0o,
T Jo sin 0.5¢
as was shown in the end of the proof of [11a3] n

Instead of the “uniform boundedness principle” we could use the “bounded
inverse theorem” or a more general “open mapping theorem” when proving

I1b2

11b6 Theorem. (“Bounded inverse theorem”)
Let X,Y be Banach spaces and T : X — Y a linear! operator. If T is
bijective then T~ is continuous (in other words, T' is a homeomorphism).

A continuous bijection between compact metrizable spaces is well-known
to be a homeomorphism. An infinite-dimension Banach space cannot be even
o-compact. Amazingly, completeness and linearity (together) can sometimes
replace compactness!

11b7 Theorem. (Banach-Schauder, “Open mapping theorem”)

Let X,Y be Banach spaces and T': X — Y a linear operator. Then T'(X)
is either a meager subset of Y, or the whole Y2 In the latter case T is open
(in other words, gives a homeomorphism between Y and the quotient space

X/T740)).
Clearly, [11b7| implies [11b6l And follows easily from (the Baire cat-

egory theorem and) a wonderful lemma.

!Continuous, I mean.

2Thus, T(X) € BP(Y) always. By the way, a continuous image of a Polish space (in
another Polish space) has the Baire property (since it is analytic). However, the Banach
space X need not be separable.
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11b8 Lemma. Let X, Y be Banach spaces and T': X — Y a linear operator.
If T(Bx) is dense in By then T'(By) contains By. Here Bx = {z : ||z| <
1} c X and By ={y: |ly]| <1} CY.

Proof. Let y € By and ¢ € (0,1). We take xy € By such that ||yo — y|| < &
where yo = T'xg. Then we take 1 € Bx such that

1

We get ||y — (yo +ey1)|| < €2. Now we take x9 € Bx such that

Y — Y

— || <e wherey, =Tz .

< e where yo = Tx>,

Hy — (yo + €y1)
— " -

c2

get |ly—(yot+ey1+e2y2)|| < €%, and so on. Finally, z = xg+ex+e%zo+. .. and
Tr = yoteyi+e%ya+--- = y. We have (1—¢)||z|| < 1, thus (1—¢)y € T(Bx)
whenever [|y|| <1 and € € (0,1). Every point of By is such (1 —¢)y. O

11c Non-continuation of holomorphic functions'

Recall that a holomorphic? function on an open disk U = {z € C : |z — 2¢| <
r} is (according to one of several equivalent definitions) a function f : U — C
of the form

flz) = Z an(z — 2o)"

where a, € C and the series converges for all z € U. Then a, = % f("(z),
of course. A holomorphic function on an open set U C C may be defined
as a function U — C holomorphic on every open disk contained in U. If
UV c Careopen, f: UUV — C and f|y, f|y are holomorphic then f is
holomorphic. The same holds for any union of open sets (finite or not).

If the radius of convergence of the series Y < f((0)2" is equal to 1
then f cannot be extended from D = {z : |z|] < 1} to (a holomorphic
function on) any (1 + €)D; but it does not mean that f cannot be extended
to some D U (e'? + eD). If for some r € (0,1) the radius of convergence of
the series ., L f("(re'¥)(z — re'?)" exceeds 1 — r then f extends to some
DU (re' + (1 — r + €)D); the latter contains some neighborhood of e¥. If
this never happens (for a given f), that is, the radius of convergence of the
series Y L f("(z)(z — )" equals 1 — || for all zy € D, one says that the

1See Sect. 3 in Kahane.
2In other words, complex analytic.
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circle 0D = {z : |z| = 1} is a natural boundary for f. In this case f cannot
be extended to any D U (el¥ + D).

The so-called disk algebra is the set A(D) of all continuous functions
f : D — C such that f|p is holomorphic. Endowed with the norm ||f|| =
max,ep | f(2)], A(D) is a Banach space (separable).

11c1 Theorem. For quasi all f € A(D) the circle 0D is the natural bound-
ary.

Proof. The radius of convergence of the series . L f"(z)(z — 2)" is a
continuous (moreover, Lip(1)) function of zy, since z; + 7D D 25 + (r — )D
whenever |23 — 23] < e. Thus, points zy € D such that the radius exceeds
1 — |2| are an open set. In order to prove that it is empty it is sufficient to
prove that it contains no point of a given dense countable set. Therefore it
is sufficient to prove for a given zy that the radius does not exceed 1 — |z|
for quasi all f.
If the radius exceeds 1 — |zg| then

1 n n
sup a]f( )(20)](1 = 20| 4+ €)™ < o0

for some € > 0. We introduce linear functionals a,, on A(D) by

0ul( ) = 1)1~ ol 49"

by Theorem it is sufficient to prove that sup,, ||a,|| = oc.
We take 6 < ¢, define f € A(D) by

1 20
f(Z) Z—Zl’ 21 ( + )‘ZO’
and observe that
! (1 —|z0| +¢)" 1 —|zo| +e\n
Wy =g - 0 = t(—0> !

clearly, |ay,(f)| — oo, thus ||a,|| — . O
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Hints to exercises
11a2; (b) C(T) is dense in L;(T); try the function sgn g.

11a6; f is uniformly continuous.

11b5; either generalize the proof of or alternatively, choose linear func-
tionals v, on Y such that |lo, || < 1 and |y, o T, || > 3|7, .
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