11 Typical functions via Banach spaces

11a Divergence of Fourier series 92
11b Decay of Fourier coefficients 95
11c Non-continuation of holomorphic functions 99
Hints to exercises 101
Index 101

11a Divergence of Fourier series ${ }^{1}$

A normed space X may be defined as a vector ${ }^{2}$ space over \mathbb{R} or \mathbb{C}, endowed with a metric ρ such that

$$
\begin{gathered}
\rho(x, y)=\rho(x+z, y+z) \text { for all } x, y, z \in X \\
\rho(c x, c y)=|c| \rho(x, y) \text { for all } x, y \in X \text { and } c \in \mathbb{R} \text { or } \mathbb{C} .
\end{gathered}
$$

The norm is then $\|x\|=\rho(x, 0)$, of course.
A Banach space is a complete normed space.
A linear functional $\alpha: X \rightarrow \mathbb{R}$ or \mathbb{C} is continuous if and only if it is bounded, that is, of finite norm

$$
\|\alpha\|=\sup _{\|x\| \leq 1}|\alpha(x)|<\infty .
$$

Here is the uniform boundedness principle.
11a1 Theorem. (Banach-Steinhaus).
If $\alpha_{1}, \alpha_{2}, \ldots$ are linear ${ }^{3}$ functionals on a Banach space X such that $\sup _{n}\left\|\alpha_{n}\right\|=\infty$ then $\sup _{n}\left|\alpha_{n}(x)\right|=\infty$ for quasi all $x \in X$.

Proof. Follows easily from 5b9.
We consider the unit circle $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}=\left\{\mathrm{e}^{\mathrm{i} \varphi}: \varphi \in \mathbb{R}\right\}$ with a probability measure $\mu: A \mapsto \frac{1}{2 \pi} m\left\{\varphi \in[-\pi, \pi]: \mathrm{e}^{\mathrm{i} \varphi} \in A\right\}$, the Hilbert space $L_{2}(\mathbb{T})=L_{2}(\mathbb{T}, \mu)$, and the Banach space $C(\mathbb{T})$ of all continuous functions $f: \mathbb{T} \rightarrow \mathbb{C}$ with the norm $\|f\|=\max _{z \in \mathbb{T}}|f(z)|$.

[^0]11a2 Exercise. Given $g \in L_{2}(\mathbb{T})$, define a linear functional α on $L_{2}(\mathbb{T})$ by $\alpha(f)=\int_{\mathbb{T}} f g \mathrm{~d} \mu$ and a linear functional β on $C(\mathbb{T})$ by the same formula: $\beta(f)=\int_{\mathbb{T}} f g \mathrm{~d} \mu$. Prove that
(a) $\|\alpha\|=\sqrt{\int_{\mathbb{T}}|g|^{2} \mathrm{~d} \mu}$;
(b) $\|\beta\|=\int_{\mathbb{T}}|g| \mathrm{d} \mu$.

The functions $z \mapsto z^{k}$ for $k \in \mathbb{Z}$ are a well-known orthonormal basis in $L_{2}(\mathbb{T})$;

$$
f=\sum_{k \in \mathbb{Z}} \alpha_{k}(f)\left(z \mapsto z^{k}\right), \quad \alpha_{k}(f)=\left\langle f, z \mapsto z^{k}\right\rangle=\int_{\mathbb{T}} f(z) \bar{z}^{k} \mu(\mathrm{~d} z)
$$

for $f \in L_{2}(\mathbb{T})$; the series converges in L_{2}.
Can we say that $f(z)=\sum_{k \in \mathbb{Z}} \alpha_{k}(f) z^{k}$?
First of all, $f(z)$ is ill-defined for $f \in L_{2}$, but well-defined for $f \in C(\mathbb{T})$; and $\alpha_{k}(f)$ are well-defined for $f \in C(\mathbb{T})$.
11a3 Proposition. $\forall^{*} f \in C(\mathbb{T}) \forall^{*} z \in \mathbb{T} \sup _{n}\left|\sum_{k=-n}^{n} \alpha_{k}(f) z^{k}\right|=\infty$.
Proof. Functions $(f, z) \mapsto \alpha_{k}(f) z^{k}$ are continuous on $C(\mathbb{T}) \times \mathbb{T}$, therefore $\left\{(f, z): \sup _{n}|\ldots|=\infty\right\} \in \mathrm{BP}(C(\mathbb{T}) \times \mathbb{T})$. By the Kuratowski-Ulam theorem it is sufficient to prove that $\forall^{*} z \in \mathbb{T} \forall^{*} f \in C(\mathbb{T}) \sup _{n}|\ldots|=\infty$.

We reduce the general z to $z=1$ using rotational symmetry, as follows.
Rotations $R_{w}: L_{2}(\mathbb{T}) \rightarrow L_{2}(\mathbb{T})$ defined for $w \in \mathbb{T}$ by $R_{w}(f): z \mapsto f(w z)$ are unitary operators, and $R_{w}\left(z \mapsto z^{n}\right)=w^{n}\left(z \mapsto z^{n}\right)$, thus, $\alpha_{n}\left(R_{w} f\right)=$ $w^{n} \alpha_{n}(f)$. Taking into account that

$$
\sum_{k=-n}^{n} \alpha_{k}(f) z^{k}=\sum_{k=-n}^{n} \alpha_{k}\left(R_{z} f\right)
$$

we see that it is sufficient to prove the following:

$$
\forall^{*} f \in C(\mathbb{T}) \sup _{n}\left|\sum_{k=-n}^{n} \alpha_{k}(f)\right|=\infty .
$$

We have

$$
\sum_{k=-n}^{n} \alpha_{k}(f)=\sum_{k=-n}^{n}\left\langle f, z \mapsto z^{k}\right\rangle=\left\langle f, \sum_{k=-n}^{n}\left(z \mapsto z^{k}\right)\right\rangle,
$$

and

$$
\sum_{k=-n}^{n} z^{k}=\frac{z^{n+0.5}-z^{-n-0.5}}{z^{0.5}-z^{-0.5}}=\frac{\sin (n+0.5) \varphi}{\sin 0.5 \varphi} \quad \text { for } z=\mathrm{e}^{\varphi} ;
$$

using 11a2(b),

$$
\begin{aligned}
& \left\|\alpha_{-n}+\cdots+\alpha_{n}\right\|=\int\left|\frac{z^{n+0.5}-z^{-n-0.5}}{z^{0.5}-z^{-0.5}}\right| \mu(\mathrm{d} z)= \\
& \quad=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\frac{\sin (n+0.5) \varphi}{\sin 0.5 \varphi}\right| \mathrm{d} \varphi=\frac{1}{\pi} \int_{0}^{\pi}|\ldots| \mathrm{d} \varphi
\end{aligned}
$$

Due to 11a1 it remains to prove that $\int_{0}^{\pi}|\ldots| \mathrm{d} \varphi \rightarrow \infty$ as $n \rightarrow \infty$. We have

$$
\begin{aligned}
& \int_{0}^{\pi}\left|\frac{\sin (n+0.5) \varphi}{\sin 0.5 \varphi}\right| \mathrm{d} \varphi \geq \int_{0}^{\pi}\left|\frac{\sin (n+0.5) \varphi}{0.5 \varphi}\right| \mathrm{d} \varphi= \\
& =2 \int_{0}^{(n+0.5) \pi} \frac{|\sin t|}{t} \mathrm{~d} t \xrightarrow[n \rightarrow \infty]{\longrightarrow} 2 \int_{0}^{\infty} \frac{|\sin t|}{t} \mathrm{~d} t \geq 2 \sum_{n=1}^{\infty} \frac{1}{\pi n} \int_{0}^{\pi} \sin t \mathrm{~d} t=\infty
\end{aligned}
$$

We see that the Fourier series fails to converge pointwise. However, Cesàro summation helps.
11a4 Proposition. $\forall f \in C(\mathbb{T}) \forall z \in \mathbb{T} \frac{1}{N+1} \sum_{n=0}^{N} \sum_{k=-n}^{n} \alpha_{k}(f) z^{k} \rightarrow f(z)$ as $N \rightarrow \infty$.
Proof. As before, by rotation we reduce the general z to $z=1$; it is sufficient to prove that

$$
\frac{1}{N+1} \sum_{n=0}^{N} \sum_{k=-n}^{n} \alpha_{k}(f) \rightarrow f(0) .
$$

In terms of functions

$$
S_{n}(z)=\sum_{k=-n}^{n} z^{k}
$$

we have

$$
\frac{1}{N+1} \sum_{n=0}^{N} \sum_{k=-n}^{n} \alpha_{k}(f)=\frac{1}{N+1}\left\langle f, S_{0}+\cdots+S_{N}\right\rangle=\frac{1}{N+1} \int_{\mathbb{T}}\left(S_{0}+\cdots+S_{N}\right) f \mathrm{~d} \mu
$$

Luckily,

$$
S_{0}(z)+\cdots+S_{2 n}(z)=S_{n}^{2}(z) \quad \text { for all } z \in \mathbb{T} \text { and } n=0,1,2, \ldots
$$

(think, why). ${ }^{1}$ We may restrict ourselves to $N \in 2 \mathbb{Z}$, since

$$
\left|\frac{1}{N+1}\left\langle f, S_{N}\right\rangle\right| \leq \frac{1}{N+1}\|f\|_{C(\mathbb{T})} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\frac{\sin (N+0.5) \varphi}{\sin 0.5 \varphi}\right| \mathrm{d} \varphi,
$$

[^1]and
\[

$$
\begin{aligned}
& \int_{-\pi}^{\pi}\left|\frac{\sin (N+0.5) \varphi}{\sin 0.5 \varphi}\right| \mathrm{d} \varphi \leq 2 \int_{0}^{\pi} \frac{1}{\sin 0.5 \varphi} \min (1,(N+0.5) \varphi) \mathrm{d} \varphi \leq \\
\leq & 2 \int_{0}^{1 /(N+0.5)} \frac{(N+0.5) \varphi}{\sin 0.5 \varphi} \mathrm{~d} \varphi+2 \int_{1 /(N+0.5)}^{\pi} \frac{1}{\sin 0.5 \varphi} \mathrm{~d} \varphi=O(1)+O(\log N)=o(N) .
\end{aligned}
$$
\]

We turn to $N=2 n \in 2 \mathbb{Z}$:

$$
\frac{1}{2 n+1} \int_{\mathbb{T}}\left(S_{0}+\cdots+S_{2 n}\right) f \mathrm{~d} \mu=\int_{\mathbb{T}} \frac{S_{n}^{2}}{2 n+1} f \mathrm{~d} \mu
$$

Noting that $\int_{\mathbb{T}} \frac{S_{n}^{2}}{2 n+1} \mathrm{~d} \mu=1$ (for two reasons...), we introduce probability measures μ_{n} on \mathbb{T} by

$$
\begin{equation*}
\frac{\mathrm{d} \mu_{n}}{\mathrm{~d} \mu}=\frac{S_{n}^{2}}{2 n+1}, \quad \text { that is, } \mu_{n}(A)=\int_{A} \frac{S_{n}^{2}}{2 n+1} \mathrm{~d} \mu \tag{11a5}
\end{equation*}
$$

and note that $\mu_{n}(\mathbb{T} \backslash U) \rightarrow 0$ as $n \rightarrow \infty$ whenever U is a neighborhood of 1 , since

$$
\frac{1}{2 n+1} S_{n}^{2}\left(\mathrm{e}^{\mathrm{i} \varphi}\right)=\frac{1}{2 n+1}\left(\frac{\sin (n+0.5) \varphi}{\sin 0.5 \varphi}\right)^{2} \leq \frac{1}{2 n+1} \frac{1}{\sin ^{2} 0.5 \varphi}
$$

It follows easily that $\int f \mathrm{~d} \mu_{n} \rightarrow f(0)$ for all $f \in C(\mathbb{T})$.
11a6 Exercise. The convergence in Prop. 11a4 is uniform in $z \in \mathbb{T}$.
Prove it.

11b Decay of Fourier coefficients ${ }^{1}$

On the unit circle \mathbb{T} (with μ as in 11a) we consider the Banach space $L_{1}(\mathbb{T})=$ $L_{1}(\mathbb{T}, \mu)$ of all (equivalence classes of) Lebesgue integrable functions, with the norm $\|f\|=\int_{\mathbb{T}}|f| \mathrm{d} \mu$. We note that $L_{2}(\mathbb{T})$ is embedded into $L_{1}(\mathbb{T})$ as a dense subset, and the linear functionals α_{k} (the Fourier coefficients, as in 11a) extend by continuity to $L_{1}(\mathbb{T})$; still,

$$
\alpha_{k}(f)=\int_{\mathbb{T}} f(z) \bar{z}^{k} \mu(\mathrm{~d} z) \quad \text { for } f \in L_{1}(\mathbb{T})
$$

The linear operator

$$
\alpha: f \mapsto\left(\alpha_{k}(f)\right)_{k \in \mathbb{Z}}
$$

[^2]maps $L_{1}(\mathbb{T})$ to the (nonseparable) Banach space $l_{\infty}(\mathbb{Z})$ of all bounded functions on \mathbb{Z} (with the supremum norm), and is continuous; moreover, $\|\alpha f\| \leq$ $\|f\|$.

Seeking the inverse operator we introduce operators $\beta_{n}, \gamma_{n}: l_{\infty}(\mathbb{Z}) \rightarrow$ $L_{1}(\mathbb{T})$ by

$$
\beta_{n}(a): z \mapsto \sum_{k=-n}^{n} a(k) z^{k} ; \quad \gamma_{n}(a)=\frac{\beta_{0}(a)+\cdots+\beta_{n}(a)}{n+1} .
$$

Clearly, $\beta_{n}\left(l_{\infty}(\mathbb{Z})\right) \subset C(\mathbb{T}) \subset L_{1}(\mathbb{T})$, and the same holds for γ_{n}. By 11a3,

$$
\forall^{*} f \in C(\mathbb{T}) \forall^{*} z \in \mathbb{T} \sup _{n}\left|\beta_{n}(\alpha(f))\right|=\infty
$$

By 11a6,

$$
\forall f \in C(\mathbb{T}) \gamma_{n}(\alpha(f)) \rightarrow f \text { in } C(\mathbb{T})
$$

Also,

$$
\alpha\left(L_{2}(\mathbb{T})\right) \subset l_{2}(\mathbb{Z}),
$$

and $l_{2}(\mathbb{Z})$ is contained in the (closed) subspace $c_{0}(\mathbb{Z}) \subset l_{\infty}(\mathbb{Z})$ of all a such that $a(k) \rightarrow 0$ as $k \rightarrow \pm \infty$. It follows by continuity that $\alpha\left(L_{1}(\mathbb{T})\right)$ is contained in $c_{0}(\mathbb{Z})$, which is a well-known Riemann-Lebesgue lemma:

$$
\forall f \in L_{1}(\mathbb{T}) \quad \alpha_{k}(f) \rightarrow 0 \quad \text { as } k \rightarrow \pm \infty
$$

11b1 Proposition. (a) $\forall f \in L_{1}(\mathbb{T}) \gamma_{2 n}(\alpha(f)) \underset{n}{\rightarrow} f\left(\right.$ in $\left.L_{1}(\mathbb{T})\right)$;
(b) For every $a \in c_{0}(\mathbb{Z})$, a belongs to $\alpha\left(L_{1}(\mathbb{T})\right)$ if and only if $\gamma_{2 n}(a)$ converge (as $n \rightarrow \infty$) in $L_{1}(\mathbb{T})$.

In this sense, $\lim _{n} \gamma_{2 n}=\alpha^{-1}: \alpha\left(L_{1}(\mathbb{T})\right) \rightarrow L_{1}(\mathbb{T})$.
11b2 Proposition. $\alpha\left(L_{1}(\mathbb{T})\right)$ is a meager subset of $c_{0}(\mathbb{Z})$.
11b3 Lemma. $\gamma_{2 n}(\alpha(f)): z \mapsto \int_{\mathbb{T}} f(z w) \mu_{n}(\mathrm{~d} w)$.
Proof.

$$
\begin{aligned}
\gamma_{2 n}(\alpha(f)) & : z \mapsto \frac{1}{2 N+1} \sum_{n=0}^{2 N} \sum_{k=-n}^{n} \alpha_{k}(f) z^{k}=\frac{1}{2 N+1} \sum_{n=0}^{2 N} \sum_{k=-n}^{n} \alpha_{k}\left(R_{z} f\right)= \\
& =\left\langle R_{z} f, \frac{S_{N}^{2}}{2 N+1}\right\rangle=\int_{\mathbb{T}}\left(R_{z} f\right)(w) \mu_{N}(\mathrm{~d} w)=\int_{\mathbb{T}} f(z w) \mu_{N}(\mathrm{~d} w) .
\end{aligned}
$$

11b4 Lemma. $\left\|\gamma_{2 n}(\alpha(f))\right\| \leq\|f\|$. (Here and below norms are taken in L_{1}.)
Proof. Using 11b3 and Tonelli's theorem,

$$
\begin{aligned}
\left\|\gamma_{2 n}(\alpha(f))\right\|= & \int_{\mathbb{T}} \mu(\mathrm{d} z)\left|\int_{\mathbb{T}} \mu_{n}(\mathrm{~d} w) f(z w)\right| \leq \int_{\mathbb{T}} \mu(\mathrm{d} z) \int_{\mathbb{T}} \mu_{n}(\mathrm{~d} w)|f(z w)|= \\
& =\int_{\mathbb{T}} \mu_{n}(\mathrm{~d} w) \int_{\mathbb{T}} \mu(\mathrm{d} z)|f(z w)|=\int_{\mathbb{T}} \mu_{n}(\mathrm{~d} w)\left\|R_{w} f\right\|=\|f\|
\end{aligned}
$$

Proof of Prop. 11b1. Item (a).
For every $\varepsilon>0$ there exists $g \in C(\mathbb{T})$ such that $\|g-f\|_{L_{1}(\mathbb{T})} \leq \varepsilon$. We know that $\gamma_{2 n}(\alpha(g)) \rightarrow g$ in $C(\mathbb{T})$, the more so, in $L_{1}(\mathbb{T})$. Using 11 b 4 ,

$$
\begin{array}{r}
\left\|\gamma_{2 n}(\alpha(f))-f\right\| \leq\left\|\gamma_{2 n}(\alpha(f))-\gamma_{2 n}(\alpha(g))\right\|+\left\|\gamma_{2 n}(\alpha(g))-g\right\|+\|g-f\| \leq \\
\leq\left\|\gamma_{2 n}(\alpha(g))-g\right\|+2 \varepsilon
\end{array}
$$

Thus, $\lim \sup _{n}\left\|\gamma_{2 n}(\alpha(f))-f\right\| \leq 2 \varepsilon$ for all ε.
Item (b).
First, by Item (a), $a=\alpha(f)$ implies $\gamma_{2 n}(a)=\gamma_{2 n}(\alpha(f)) \rightarrow f$.
Second, if $\gamma_{2 n}(a) \rightarrow f$ then

$$
\begin{aligned}
& \alpha_{k}(f)=\lim _{n} \alpha_{k}\left(\gamma_{2 n}(a)\right)=\lim _{n} \frac{\alpha_{k}\left(\beta_{0}(a)\right)+\cdots+\alpha_{k}\left(\beta_{2 n}(a)\right)}{2 n+1}= \\
&=\lim _{n} \frac{(2 n-|k|+1) a(k)}{2 n+1}=a(k)
\end{aligned}
$$

for all k; thus, $a=\alpha(f) \in \alpha\left(L_{1}(\mathbb{T})\right)$.
For proving 11 b 2 we need a bit stronger form of the Banach-Steinhaus theorem.

11b5 Exercise. Let X, Y be Banach spaces, and $T_{n}: X \rightarrow Y$ linear ${ }^{1}$ operators such that $\sup _{n}\left\|T_{n}\right\|=\infty$. Then $\sup _{n}\left\|T_{n} x\right\|=\infty$ for quasi all $x \in X$.

Prove it.
Proof of Prop. 11b2. By 11b1(b) it is sufficient to prove that $\forall^{*} a \in c_{0}(\mathbb{Z})$ $\sup _{n}\left\|\gamma_{2 n}(a)\right\|=\infty$. By 11 b 5 it is sufficient to prove that $\sup _{n}\left\|\gamma_{2 n}\right\|=\infty$. We introduce $a_{n} \in c_{0}(\mathbb{Z})$ by

$$
a_{n}(k)= \begin{cases}1 & \text { if }|k| \leq n \\ 0 & \text { otherwise }\end{cases}
$$

[^3]note that $\beta_{n}\left(a_{m}\right)=S_{\min (m, n)}$ (here $S_{n}(z)=\sum_{k=-n}^{n} z^{k}$, as in Sect. 11a) and get
$$
\left\|\gamma_{m+k}\left(a_{m}\right)\right\|=\left\|\frac{\beta_{0}\left(a_{m}\right)+\cdots+\beta_{m+k}\left(a_{m}\right)}{m+k+1}\right\|=\left\|\frac{S_{0}+\cdots+S_{m}+k S_{m}}{m+k+1}\right\| \underset{k}{ }\left\|S_{m}\right\|
$$
thus,
\[

$$
\begin{gathered}
\sup _{n}\left\|\gamma_{2 n}\left(a_{m}\right)\right\| \geq\left\|S_{m}\right\| \\
\sup _{n}\left\|\gamma_{2 n}\right\| \geq \sup _{n} \frac{\left\|\gamma_{2 n}\left(a_{m}\right)\right\|}{\left\|a_{m}\right\|}=\sup _{n}\left\|\gamma_{2 n}\left(a_{m}\right)\right\| \geq\left\|S_{m}\right\|
\end{gathered}
$$
\]

for all m. Finally,

$$
\left\|S_{m}\right\|=\frac{1}{\pi} \int_{0}^{\pi}\left|\frac{\sin (n+0.5) \varphi}{\sin 0.5 \varphi}\right| \mathrm{d} \varphi \rightarrow \infty \quad \text { as } m \rightarrow \infty
$$

as was shown in the end of the proof of 11a3.
Instead of the "uniform boundedness principle" we could use the "bounded inverse theorem" or a more general "open mapping theorem" when proving 11b2.

11b6 Theorem. ("Bounded inverse theorem")
Let X, Y be Banach spaces and $T: X \rightarrow Y$ a linear ${ }^{1}$ operator. If T is bijective then T^{-1} is continuous (in other words, T is a homeomorphism).

A continuous bijection between compact metrizable spaces is well-known to be a homeomorphism. An infinite-dimension Banach space cannot be even σ-compact. Amazingly, completeness and linearity (together) can sometimes replace compactness!

11b7 Theorem. (Banach-Schauder, "Open mapping theorem")
Let X, Y be Banach spaces and $T: X \rightarrow Y$ a linear operator. Then $T(X)$ is either a meager subset of Y, or the whole $Y .{ }^{2}$ In the latter case T is open (in other words, gives a homeomorphism between Y and the quotient space $\left.X / T^{-1}(0)\right)$.

Clearly, 11b7 implies 11b6. And 11 b 7 follows easily from (the Baire category theorem and) a wonderful lemma.

[^4]11b8 Lemma. Let X, Y be Banach spaces and $T: X \rightarrow Y$ a linear operator. If $T\left(B_{X}\right)$ is dense in B_{Y} then $T\left(B_{X}\right)$ contains B_{Y}. Here $B_{X}=\{x:\|x\|<$ $1\} \subset X$ and $B_{Y}=\{y:\|y\|<1\} \subset Y$.

Proof. Let $y \in B_{Y}$ and $\varepsilon \in(0,1)$. We take $x_{0} \in B_{X}$ such that $\left\|y_{0}-y\right\|<\varepsilon$ where $y_{0}=T x_{0}$. Then we take $x_{1} \in B_{X}$ such that

$$
\left\|\frac{y_{0}-y}{\varepsilon}-y_{1}\right\|<\varepsilon \quad \text { where } y_{1}=T x_{1} .
$$

We get $\left\|y-\left(y_{0}+\varepsilon y_{1}\right)\right\|<\varepsilon^{2}$. Now we take $x_{2} \in B_{X}$ such that

$$
\left\|\frac{y-\left(y_{0}+\varepsilon y_{1}\right)}{\varepsilon^{2}}-y_{2}\right\|<\varepsilon \quad \text { where } y_{2}=T x_{2}
$$

get $\left\|y-\left(y_{0}+\varepsilon y_{1}+\varepsilon^{2} y_{2}\right)\right\|<\varepsilon^{3}$, and so on. Finally, $x=x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\ldots$ and $T x=y_{0}+\varepsilon y_{1}+\varepsilon^{2} y_{2}+\cdots=y$. We have $(1-\varepsilon)\|x\|<1$, thus $(1-\varepsilon) y \in T\left(B_{X}\right)$ whenever $\|y\|<1$ and $\varepsilon \in(0,1)$. Every point of B_{Y} is such $(1-\varepsilon) y$.

11c Non-continuation of holomorphic functions ${ }^{1}$

Recall that a holomorphic ${ }^{2}$ function on an open disk $U=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\right.$ $r\}$ is (according to one of several equivalent definitions) a function $f: U \rightarrow \mathbb{C}$ of the form

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where $a_{n} \in \mathbb{C}$ and the series converges for all $z \in U$. Then $a_{n}=\frac{1}{n!} f^{(n)}\left(z_{0}\right)$, of course. A holomorphic function on an open set $U \subset \mathbb{C}$ may be defined as a function $U \rightarrow \mathbb{C}$ holomorphic on every open disk contained in U. If $U, V \subset \mathbb{C}$ are open, $f: U \cup V \rightarrow \mathbb{C}$ and $\left.f\right|_{U},\left.f\right|_{V}$ are holomorphic then f is holomorphic. The same holds for any union of open sets (finite or not).

If the radius of convergence of the series $\sum_{n} \frac{1}{n!} f^{(n)}(0) z^{n}$ is equal to 1 then f cannot be extended from $\mathbb{D}=\{z:|z|<1\}$ to (a holomorphic function on) any $(1+\varepsilon) \mathbb{D}$; but it does not mean that f cannot be extended to some $\mathbb{D} \cup\left(\mathrm{e}^{\mathrm{i} \varphi}+\varepsilon \mathbb{D}\right)$. If for some $r \in(0,1)$ the radius of convergence of the series $\sum_{n} \frac{1}{n!} f^{(n)}\left(r \mathrm{e}^{\mathrm{i} \varphi}\right)\left(z-r \mathrm{e}^{\mathrm{i} \varphi}\right)^{n}$ exceeds $1-r$ then f extends to some $\mathbb{D} \cup\left(r \mathrm{e}^{\mathrm{i} \varphi}+(1-r+\varepsilon) \mathbb{D}\right)$; the latter contains some neighborhood of $\mathrm{e}^{\mathrm{i} \varphi}$. If this never happens (for a given f), that is, the radius of convergence of the series $\sum_{n} \frac{1}{n!} f^{(n)}\left(z_{0}\right)\left(z-z_{0}\right)^{n}$ equals $1-\left|z_{0}\right|$ for all $z_{0} \in \mathbb{D}$, one says that the

[^5]circle $\partial \mathbb{D}=\{z:|z|=1\}$ is a natural boundary for f. In this case f cannot be extended to any $\mathbb{D} \cup\left(\mathrm{e}^{\mathrm{i} \varphi}+\varepsilon \mathbb{D}\right)$.

The so-called disk algebra is the set $A(\mathbb{D})$ of all continuous functions $f: \overline{\mathbb{D}} \rightarrow \mathbb{C}$ such that $\left.f\right|_{\mathbb{D}}$ is holomorphic. Endowed with the norm $\|f\|=$ $\max _{z \in \mathbb{D}}|f(z)|, A(\mathbb{D})$ is a Banach space (separable).

11c1 Theorem. For quasi all $f \in A(\mathbb{D})$ the circle $\partial \mathbb{D}$ is the natural boundary.

Proof. The radius of convergence of the series $\sum_{n} \frac{1}{n!} f^{(n)}\left(z_{0}\right)\left(z-z_{0}\right)^{n}$ is a continuous (moreover, $\operatorname{Lip}(1))$ function of z_{0}, since $z_{1}+r \mathbb{D} \supset z_{2}+(r-\varepsilon) \mathbb{D}$ whenever $\left|z_{1}-z_{2}\right| \leq \varepsilon$. Thus, points $z_{0} \in \mathbb{D}$ such that the radius exceeds $1-\left|z_{0}\right|$ are an open set. In order to prove that it is empty it is sufficient to prove that it contains no point of a given dense countable set. Therefore it is sufficient to prove for a given z_{0} that the radius does not exceed $1-\left|z_{0}\right|$ for quasi all f.

If the radius exceeds $1-\left|z_{0}\right|$ then

$$
\sup _{n} \frac{1}{n!}\left|f^{(n)}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|+\varepsilon\right)^{n}<\infty
$$

for some $\varepsilon>0$. We introduce linear functionals α_{n} on $A(\mathbb{D})$ by

$$
\alpha_{n}(f)=\frac{1}{n!} f^{(n)}\left(z_{0}\right)\left(1-\left|z_{0}\right|+\varepsilon\right)^{n} ;
$$

by Theorem 11a1 it is sufficient to prove that $\sup _{n}\left\|\alpha_{n}\right\|=\infty$.
We take $\delta<\varepsilon$, define $f \in A(\mathbb{D})$ by

$$
f(z)=\frac{1}{z-z_{1}}, \quad z_{1}=(1+\delta) \frac{z_{0}}{\left|z_{0}\right|}
$$

and observe that
$f^{(n)}(z)= \pm \frac{n!}{\left(z-z_{1}\right)^{n+1}}, \quad\left|\alpha_{n}(f)\right|=\frac{\left(1-\left|z_{0}\right|+\varepsilon\right)^{n}}{\left|z_{0}-z_{1}\right|^{n+1}}=$ const. $\left(\frac{1-\left|z_{0}\right|+\varepsilon}{1-\left|z_{0}\right|+\delta}\right)^{n} ;$
clearly, $\left|\alpha_{n}(f)\right| \rightarrow \infty$, thus $\left\|\alpha_{n}\right\| \rightarrow \infty$.

Hints to exercises

11a2 (b) $C(\mathbb{T})$ is dense in $L_{1}(\mathbb{T})$; try the function $\operatorname{sgn} g$.
11a6 f is uniformly continuous.
11b5: either generalize the proof of 11a1, or alternatively, choose linear functionals α_{n} on Y such that $\left\|\alpha_{n}\right\| \leq 1$ and $\left\|\alpha_{n} \circ T_{n}\right\| \geq \frac{1}{2}\left\|T_{n}\right\|$.

Index

Banach space, 92
Banach-Steinhaus theorem, 92
Bounded inverse theorem, 98
normed space, 92
Open mapping theorem, 98
$A(\mathbb{D}), 100$
$\alpha, 95$
$\alpha_{k}, 93,95$
$\beta_{n}, \gamma_{n}, 96$
$C(\mathbb{T}), 92$
D, 99
$\mu_{n}, 95$
$S_{n}(z), 94$
$\mathbb{T}, \mu, 92$

[^0]: ${ }^{1}$ See Sect. 4.2.1 in book: E.M. Stein and R. Shakarchi, "Functional analysis", Princeton 2011. Also, Sect. 1 in: J.-P. Kahane (2000) "Baire's category theorem and triginometric series", Journal d'Analyse Mathématique 80 143-182.
 ${ }^{2}$ In other words, linear.
 ${ }^{3}$ Continuous, I mean.

[^1]: ${ }^{1}$ For $n=1$ it means, $z^{0}+\left(z^{-1}+z^{0}+z^{1}\right)+\left(z^{-2}+z^{-1}+z^{0}+z^{1}+z^{2}\right)=\left(z^{-1}+z^{0}+z^{1}\right)^{2}$.

[^2]: ${ }^{1}$ See Sect. 4.3.1 in Stein and Shakarchi.

[^3]: ${ }^{1}$ Continuous, I mean.

[^4]: ${ }^{1}$ Continuous, I mean.
 ${ }^{2}$ Thus, $T(X) \in \mathrm{BP}(Y)$ always. By the way, a continuous image of a Polish space (in another Polish space) has the Baire property (since it is analytic). However, the Banach space X need not be separable.

[^5]: ${ }^{1}$ See Sect. 3 in Kahane.
 ${ }^{2}$ In other words, complex analytic.

