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12a A third topology on sequences

Two metrizable topologies on [0, 1]∞ are mentioned in Sect. 4d. The first one
is the compact product topology. The second one is the nonseparable product
topology of ([0, 1], d)∞. Now we introduce a third one, the nonseparable
topology of uniform convergence, corresponding to a complete metric

(12a1) ρ(x, y) = sup
k
|x(k)− y(k)| for x, y ∈ [0, 1]∞ .

In the first topology, the set x(1, 2, . . . ) = {x(n) : n = 1, 2, . . . } ⊂ [0, 1] for a
typical sequence x is dense in [0, 1], and each point is of multiplicity 1. In the
second topology, the set x(1, 2, . . . ) typically contains all rational numbers
(therefore, is dense), and each point is of infinite multiplicity. In the third
topology, as we’ll see soon, the set x(1, 2, . . . ) typically is nowhere dense, and
each point is of multiplicity 1.

Below, [0, 1]∞ is endowed with the metric (12a1).

12a2 Lemma. ∀t ∈ [0, 1] ∀∗x ∈ [0, 1]∞ t /∈ Cl(x(1, 2, . . . )).

Proof. The function x 7→ dist(t, x(1, 2, . . . )) on [0, 1]∞ is continuous (more-
over, Lip(1)), thus, {x : dist(t, x(1, 2, . . . )) > 0} is open. It is dense; indeed,
∀x ∀ε ∃y

(
ρ(x, y) ≤ ε ∧ dist(t, y(1, 2, . . . )) ≥ ε

)
.

It follows (via the Baire category theorem) that Cl(x(1, 2, . . . )) typically
misses all rational numbers, and therefore is nowhere dense.

On the other hand. . .
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12a3 Exercise. Prove that ∀∗x ∈ [0, 1]∞ A ∩ Cl(x(1, 2, . . . )) = ∅
(a) whenever A is nowhere dense;
(b) whenever A is meager.

12a4 Corollary. There exists a null set A ⊂ [0, 1] such that ∀∗x ∈ [0, 1]∞

Cl(x(1, 2, . . . )) ⊂ A. (Proof: just take a comeager null set.)

Given a nonempty A ⊂ {1, 2, . . . }, we consider x(A) = {x(n) : n ∈ A}.

12a5 Lemma. If A,B ⊂ {1, 2, . . . } are disjoint then typically Cl(x(A)) and
Cl(x(B)) are disjoint.

Proof. The function x 7→ dist(x(A), x(B)) is continuous (moreover, Lip(2)),
and> 0 on a dense open set, since ∀x ∀ε ∃y

(
ρ(x, y) ≤ ε∧ dist(y(A), y(B)) ≥

ε
)
; just take y(A) ⊂ {0, 2ε, 4ε, . . . } and y(B) ⊂ {ε, 3ε, 5ε, . . . }.

Multiplicity 1 is thus ensured. Moreover, taking A = {n} and B =
{1, 2 . . . } \ {n} we see that, typically, each x(n) is an isolated point of
x(1, 2, . . . ).

On the other hand, ∀x ∃A,B
(
A ∩ B = ∅, dist(x(A), x(B)) = 0

)
(since

x(nk)→ t for some (nk)k and t).

12b Typical set of accumulation points

Consider now the space l∞(→ Rn) of all bounded sequences x = (x(1), x(2), . . . )
of points of Rn, with the metric

ρ(x, y) = sup
n
|x(n)− y(n)| .

This is a nonseparable complete metric (moreover, Banach) space.
For each x ∈ l∞(→ Rn) we consider the nonempty compact set of accu-

mulation points

Acc(x) = {a : ∀ε ∀n ∃k |x(n+ k)− a| ≤ ε} ∈ K(Rn) .

12b1 Theorem. For quasi all x ∈ l∞(→ Rn) the set K = Acc(x) is a
nowhere dense perfect null set satisfying1

dimM(K) = 0 , dimM(K) = n .

No, we do not need to prove this from scratch. Fortunately we can use
results of Sect. 10.

1It is also homeomorphic to the Cantor set, as we’ll see in 12d.



Tel Aviv University, 2013 Measure and category 104

12b2 Exercise. Let X, Y be metrizable spaces and f : X → Y be open (it
means, the image of every open set is an open set) and continuous. Then the
inverse image of a meager set is meager, and the inverse image of a comeager
set is comeager.1

Prove it.

According to Remark 1f3, such f may be called genericity preserving
(category preserving).

Theorem 12b1 now follows from Theorem 10c1 (and 10c2, 10c5), 12b2
and Prop. 12b3 below.

12b3 Proposition. The map

l∞(→ Rn) 3 x 7→ Acc(x) ∈ K(Rn)

is continuous and open.

Proof. First, continuity. If ρ(x, y) ≤ ε and a ∈ Acc(x) then xnk → a for
some (nk)k, and ynki → b for some (ki)i and b. We have ρ(a, b) ≤ ε and
b ∈ Acc(y), therefore Acc(x) ⊂ (Acc(y))+ε. Similarly, Acc(y) ⊂ (Acc(x))+ε.
Thus, the map is continuous (and moreover, Lip(1)).

Second, openness. Let K1 = Acc(x) and dH(K1, K2) ≤ ε; we have to find
y close to x such that K2 = Acc(y). We choose z(1), z(2), · · · ∈ K2 such
that K2 = Acc(z). We take the first n1 such that |x(n1)− z(1)| ≤ ε and let
y(n1) = z(1). Then we take the first n2 > n1 such that |x(n2) − z(2)| ≤ ε
and let y(n2) = z(2). And so on; y(nk) ∈ K2, |y(nk) − x(nk)| ≤ ε and
K2 = Acc((y(nk))k). Finally, for every n /∈ {n1, n2, . . . } we take the first i
such that |z(i) − x(n)| ≤ 2ε and let y(n) = z(i), if such i exists; otherwise
y(n) = x(n), but this happens only finitely many times, since dist(xn, K1)→
0. We get ρ(x, y) ≤ 2ε and Acc(y) = K2.

12b4 Exercise. Let X, Y and f be as in 12b2; assume in addition that f(X)
is dense in Y . Then for every A ⊂ Y , f−1(A) is nowhere dense if and only if
A is nowhere dense.

Prove it.

12b5 Remark. Still, it can happen that f−1(A) is meager but A is not. An
example: the projection R×Q→ R.

However, if a meager f−1(A) is of the form ∪nf−1(An) with all f−1(An)
nowhere dense, then A is meager.

1Kechris, Sect. 8K, Exer. (8.45).
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12c Typical measurable function

We turn to the space L∞(→ Rn) of all equivalence classes of Lebesgue mea-
surable functions f : [0, 1]→ Rn, bounded (up to null sets), with the metric

ρ(f, g) = ess sup |f − g| = min{ε : |f − g| ≤ ε a.e.} .

This is also a nonseparable complete metric (moreover, Banach) space. For
each f ∈ L∞(→ Rn) we consider the nonempty compact set (the support)

Supp(f) = {a : ∀ε m(f−1({a}+ε)) > 0} .

12c1 Exercise. f(t) ∈ Supp(f) for almost all t.
Prove it.

12c2 Proposition. The map

L∞(→ Rn) 3 f 7→ Supp(f) ∈ K(Rn)

is continuous and open.

Proof. First, continuity. If ρ(f, g) ≤ ε and a ∈ Supp(f) then m(g−1(a− ε−
δ, a + ε + δ)) ≥ m(f−1(a − δ, a + δ)) > 0 for all δ, therefore [a − ε, a +
ε] ∩ Supp(g) 6= ∅; thus, Supp(f) ⊂ (Supp(g))+ε. Similarly, Supp(g) ⊂
(Supp(f))+ε. Thus, the map is continuous (and moreover, Lip(1)).

Second, openness. Let K1 = Supp(f) and dH(K1, K2) ≤ ε; we have to
find g close to f such that K2 = Supp(g). We choose z(1), z(2), · · · ∈ K2 such
that K2 = Cl

(
z(1, 2, . . . )

)
. We seek g : [0.1]→ {z(1), z(2), . . . }. We consider

measurable sets An = f−1([nε, nε+ ε)) and for each n such that m(An) > 0
we take disjoint measurable subsets An,1, An,2, · · · ⊂ An of positive measure.

For every pair n, k satisfying |z(k)− (n+ 0.5)ε| ≤ 2ε we let

g(t) = z(k) for all t ∈ An,k .

At least one such n exists for every k, thus all z(k) belong to Supp(g). Also,
f(t) ∈ [nε, nε+ ε), thus |g(t)− f(t)| ≤ 3ε.

Finally, at every other point t we let g(t) = z(i) for the first i such that
|f(t)− z(i)| ≤ 2ε. We get ρ(f, g) ≤ 3ε and Supp(g) = K2.

Similarly to 12b1 we get:

12c3 Theorem. For quasi all f ∈ L∞(→ Rn) the set K = Supp(f) is a
nowhere dense perfect null set satisfying1

dimM(K) = 0 , dimM(K) = n .

1It is also homeomorphic to the Cantor set, as we’ll see in 12d.
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12c4 Exercise. If A ⊂ Rn is meager then ∀∗K ∈ K(Rn) A ∩K = ∅.
Prove it.

12c5 Corollary. There exists a null set A ⊂ Rn such that ∀∗f ∈ L∞(→
Rn) Supp(f) ⊂ A. (Proof: just take a comeager null set.)

12c6 Exercise. If A,B ⊂ [0, 1] are disjoint measurable sets then typically
Supp(f |A) and Supp(f |B) are disjoint.

Prove it.

12c7 Proposition. A typical f ∈ L∞(→ Rn) is one-to-one (that is, the
equivalence class contains some one-to-one function).

Proof. We correct f on a null set getting f(t) ∈ Supp(f |[k2−n,(k+1)2−n)) when-
ever t ∈ [k2−n, (k + 1)2−n). By 12c6 f must be one-to-one.

Note that the dimension of [0, 1] is irrelevant! A typical f ∈ L∞([0, 1]m →
Rn) is one-to-one also when m > n.

Moreover, Lebesgue measure on [0, 1] was used only via the σ-algebra of
measurable sets and the σ-ideal of null sets. All said generalizes readily to a
measurable space with a given σ-ideal (under mild conditions). A measure
will be more relevant in Sect. 12e.

12d Typical continuous function

A “good” function Rn → R behaves locally like a (nonconstant) linear func-
tion; in particular, for every Lebesgue measurable set A ⊂ Rn of positive
measure,

f |A is not one-to-one ,

f(A) is not a null set .

Let us try to imagine quite the opposite:

(12d1)

f : [0, 1]n → R is continuous,

and for some set A ⊂ [0, 1]n of full measure ,

f |A is one-to-one ,

f(A) is a meager set of Hausdorff dimension 0 .

The latter means that for every ε > 0 it is possible to cover f(A) with
countably many balls {xk}+rk such that

∑
k r

ε
k ≤ ε.1

1A set of Hausdorff dimension 0 need not be meager. Moreover, it can be comeager! An
example: Liouville numbers. (See Oxtoby Sect. 2 or A. Bruckner, J. Bruckner, B. Thomson
“Real analysis” (second edition, 2008), Problem 10:8.3.) On the other hand, dimM(B) <
n implies that B is meager (and moreover, nowhere dense), just because dimM(B) =
dimM(Cl(B)).
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What do you think about existence of such f?
A measurable (rather that continuous) function with similar properties1

can be constructed using well-known tricks with digits; say (for n = 2)

f(x, y) = (0.γ1γ2 . . . )3 whenever x = (0.β1β2 . . . )2 , y = (0.β′1β
′
2 . . . )2 ,

γ1 = 2β1, γ2 = 2β′1, γ3 = 2β2, γ4 = 2β′2, γ5 = 2β3, . . .

This f is Riemann integrable (recall 5e) but has a dense set of discontinuity
points. It is hard to believe that such a function can be continuous. But. . .

12d2 Theorem. 2 Every continuous function [0, 1]n → R is the sum of two
functions satisfying (12d1).

Have you any idea, why? Wait a little. . .

Given a metrizable space X, we consider the space Cb(X → Rn) of all
bounded continuous functions f : X → Rn with the metric

ρ(f, g) = sup
x∈X
|f(x)− g(x)| .

12d3 Proposition. Let X be a metrizable space and Y ⊂ X a closed set.
Then the map

Cb(X → Rn) 3 f 7→ f |Y ∈ Cb(Y → Rn)

is continuous and open.

Proof. Continuity is evident. Openness follows easily from the Tietze[-Urysohn-
Brouwer-Lebesgue] extension theorem: for every g ∈ Cb(Y → R) there exists
f ∈ Cb(X → R) such that f |Y = g and supX |f | = supY |g|.

It follows by 12b2 that f |Y is typical if f is typical. Thus, being interested
in “very disconnected” subsets, we turn to “very disconnected” spaces.

The set Clopen(X) of all clopen (that is, open-and-closed) sets in X is an
algebra of sets. If Clopen(X) = {∅, X}, X is called connected. If Clopen(X)
is a basis (of the topology), X is called zero-dimensional.3 Also, X is called
perfect, if it has no isolated points.

12d4 Lemma. A typical set of K(Rn) is zero-dimensional.

1Hausdorff dimension less than 1 (rather than 0).
2See also Bruckner, Bruckner, Thomson Exer. 10:7.9.
3If X is zero-dimensional then clearly x is totally disconnected, that is, contains no

connected subset of more than one point. The converse holds (for compact X; and fails
for some subsets of R2), but we do not need it.
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Proof. Given ε > 0, consider all K such that every coordinate of every point
of K belongs to R\εZ. They are a dense open set in K(Rn), and every point
has a clopen ε

√
n-small neighborhood. Quasi all K satisfy this condition for

all ε = 1/k, k = 1, 2, . . .

If X is a (nonempty) perfect zero-dimensional compact (metrizable) space
then clearly

∗ every nonempty clopen subset of X is such space;

∗ for every n there exists a partition of X into n clopen sets;1

∗ for every ε there exists a finite partition of X into ε-small (that is, of
diameter ≤ ε) clopen sets;

∗ for every ε, for every n large enough, there exists a partition of X into
n ε-small clopen sets.

12d5 Lemma. All perfect zero-dimensional compact spaces are mutually
homeomorphic (and therefore homeomorphic to the Cantor set).

Proof. Given such spaces X, Y , we take partitions X = ]n1
k1=1Xk1 , Y =

]n1
k1=1Yk1 into 1-small clopen sets. Then, partitions Xk1 = ]n2

k2=1Xk1,k2 , Yk1 =
]n2
k2=1Yk1,k2 into 1/2-small clopen sets. And so on. Finally, we consider G1 =
]n1
k1=1Xk1 × Yk1 ⊂ X × Y , G2 = ]n1

k1=1 ]
n2
k2=1 Xk1,k2 × Yk1,k2 ⊂ X × Y and so

on, and note that G = ∩nGn is the graph of a homeomorphism X → Y .

12d6 Corollary. A typical set of K(Rn) is homeomorphic to the Cantor set.

Amazingly, the Cantor set in Rn

can be knotted! See “Antoine’s
necklace” in Wikipedia.2 I won-
der, is this typical?

If X is a (nonempty) compact (metrizable) space then clearly

∗ every nonempty closed subset of X is such space;

∗ for every ε there exists a finite covering of X by ε-small closed sets;

∗ for every ε, for every n large enough, there exists a covering of X by n
ε-small closed sets. (Not necessarily different. . . )

1A partition is a covering by nonempty, pairwise disjoint sets.
2Image from Wikipedia.
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12d7 Lemma. Every compact space is a continuous image of the Cantor
set.

Proof. Let C be the Cantor set and X a compact space. We take a partition
C = ]n1

k1=1Ck1 of C into 1-small clopen sets and a covering X = ∪n1
k1=1Xk1 of

X by 1-small closed sets. Then, Ck1 = ]n2
k2=1Ck1,k2 and Xk1 = ∪n2

k2=1Xk1,k2 ,
with 1/2-small sets. And so on. We define G1, G2, . . . and G as before and
note that G is the graph of a continuous map C → X.

12d8 Proposition. The map

C(C → Rn) 3 f 7→ f(C) ∈ K(Rn)

is continuous and open.

Here C is the Cantor set, and C(C → Rn) is the space of all continuous
maps C → Rn with the metric ρ(f, g) = maxx∈C |f(x)− g(x)|.

Proof. Continuity (and even Lip(1)) is evident; openness will be proved.
Let K1 = f(C) and dH(K1, K2) ≤ ε; we need g close to f such that

K2 = g(C). We take a finite partition C = C1 ] · · · ] Cm of C into clopen
sets Ck such that diam(f(Ck)) ≤ ε. Sets

Xk =
(
f(Ck)

)
+ε ∩K2

are a covering of K2 by closed sets. We take gk ∈ C(Ck → Rn) such that
gk(Ck) = Xk and combine them into g ∈ C(C → Rn), then g(C) = K2 and
ρ(f, g) ≤ 2ε.

Similarly to 12b1 we get:

12d9 Corollary. For quasi all f ∈ C(C → Rn) the set K = f(C) is a
nowhere dense null set homeomorphic to the Cantor set, satisfying dimM(K) =
0, dimM(K) = n.

12d10 Exercise. If A,B are disjoint clopen subsets of the Cantor set then
typically f(A) and f(B) are disjoint.

Prove it.

It follows that a typical f is one-to-one. Therefore (by compactness) it is
a homeomorphism between C and f(C). Thus, we improve 12d9:

12d11 Theorem. For quasi all f ∈ C(C → Rn), f is a homeomorphism of
C onto a nowhere dense null set K = f(C) satisfying

dimM(K) = 0 , dimM(K) = n .
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Now (at last) we are in position to attack Theorem 12d2.

12d12 Theorem. 1 There exists a set A ⊂ [0, 1]n of full measure such that
for quasi all f ∈ C([0, 1]n → R),

f |A is one-to-one ,

f(A) is a meager set of Hausdorff dimension 0 .

A subset of R is zero-dimensional if and only if its complement is dense
(think, why). Thus, a closed subset of R is zero-dimensional if and only if
it is nowhere dense. By 1d4(a), the union of two zero-dimensional closed
subsets of R is zero-dimensional.2

12d13 Lemma. There exist perfect zero-dimensional sets Kn ⊂ [0, 1] such
that K1 ⊂ K2 ⊂ . . . and m(Kn) ↑ 1.

Proof. Monotonicity can be achieved by taking K1 ⊂ K1 ∪K2 ⊂ K1 ∪K2 ∪
K3 ⊂ . . . (since a finite union of perfect zero-dimensional subsets of [0, 1]
is perfect and zero-dimensional). It remains to find, for a given ε, a perfect
zero-dimensional K ⊂ [0, 1] satisfying m(K) ≥ 1− ε.

We take a dense sequence of pairwise disjoint closed intervals [xk, xk +
δk] ⊂ [0, 1] such that

∑
k δk ≤ ε, let K = [0, 1] \∪k(xk, xk + δk) and note that

K is perfect and zero-dimensional.

The same for [0, 1]n follows immediately: take Kn
1 ⊂ Kn

2 ⊂ · · · ⊂ [0, 1]n.

12d14 Lemma. If dimM(A) = 0 then A is of Hausdorff dimension 0.

Proof. It is possible to cover A with Nδ(A) balls of radius δ. We have

lim infδ→0+
logNδ(A)
log 1/δ

= 0. Given ε, we take δ such that logNδ(A) ≤ 1
2
ε log 1/δ ≤

ε log 1/δ − log 1/ε, then δεNε(A) ≤ ε.

12d15 Lemma. Sets of Hausdorff dimension 0 are a σ-ideal.

Proof. Let A = A1∪A2∪ . . . , each Ak being of Hausdorff dimension 0. Given
ε, for each k we cover Ak with balls {xk,i}+rk,i such that

∑
i r
ε
k,i ≤ 2−iε; then∑

k,i r
ε
k,i ≤ ε.

Proof of Theorem 12d12. We take perfect zero-dimensionalK1 ⊂ K2 ⊂ · · · ⊂
[0, 1]n such that m(Ki) ↑ 1 and let A = ∪iKi. By 12d5, each Ki is home-
omorphic to the Cantor set. Thus, Theorem 12d11 applies to quasi all
f ∈ C(Ki → R). By 12d3 (and 12b2) the same holds for quasi all f ∈

1See also Bruckner, Bruckner, Thomson, Exercise 10:7.6.
2In more general spaces this fact holds but is harder to prove.
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C([0, 1]n → R) restricted to Ki. That is, for each i, f |Ki is a homeomor-
phism of Ki onto a nowhere dense null set f(Ki) satisfying dimM(f(Ki)) = 0
(and dimM(f(Ki)) = 1). It follows that f |A is one-to-one and f(A) is mea-
ger. By 12d14, each f(Ki) is of Hausdorff dimension 0. By 12d15, f(A) is of
Hausdorff dimension 0.

12d16 Remark. Our choice of A ensures, in addition, that for every meager
B ⊂ Rn

∀∗f ∈ C([0, 1]n → R) f(A) ∩B = ∅ .

Thus, there exists a null set B ⊂ Rn such that

∀∗f ∈ C([0, 1]n → R) f(A) ⊂ B .

(Similar to 12c4, 12c5.)

Proof of Theorem 12d2. By Theorem 12d12, quasi all f ∈ C([0, 1]n → R)
satisfy (12d1). Given g ∈ C([0, 1]n → R), a map f 7→ g − f is a homeo-
morphism of C([0, 1]n → R). Thus, also g − f satisfies (12d1) for quasi all
f .

12e Another topology on measurable functions

We turn to the space L1(→ Rn) of all equivalence classes of Lebesgue inte-
grable functions f : [0, 1]→ Rn with the metric

ρ(f, g) =

∫
|f − g| dm.

This is a Polish (in fact, Banach) space.

12e1 Lemma. ∀x ∈ Rn ∀∗f ∈ L1(→ Rn) m{t : f(t) = x} = 0.

Proof. For every ε > 0 the set
{
f : m{t : f(t) = x} < ε

}
is open and dense

in L1(→ Rn).

12e2 Exercise. If A ⊂ Rn is meager then ∀∗f ∈ L1(→ Rn) m
(
f−1(A)

)
= 0.

Prove it.

12e3 Corollary. There exists a null set A ⊂ Rn such that for quasi all
f ∈ L1(→ Rn), f(·) ∈ A almost everywhere. (Proof: just take a comeager
null set.)

Similarly to 12c we may define the support (closed rather than compact),
but this time it is the whole Rn.
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12e4 Lemma. For every nonempty open G ⊂ R, ∀∗f ∈ L1(→ Rn)
m
(
f−1(G)

)
> 0.

Proof. Take continuous ϕ : Rn → [0,∞) that vanishes outside G but not
everywhere. Then f 7→

∫
ϕ(f(·)) dm is a continuous function on L1(→ Rn),

positive on a dense set.

The same holds for f |A for an arbitrary measurable A ⊂ [0, 1] of positive
measure (but not for all A simultaneously, of course). Do you think it leads
to infinite multiplicity? No, it does not. The result is similar to 12c7 but the
proof is harder.

12e5 Proposition. A typical f ∈ L1(→ Rn) is one-to-one (that is, the
equivalence class contains some one-to-one function).

12e6 Lemma. If A,B ⊂ [0, 1] are disjoint measurable sets then for a typical
f ∈ L1(→ Rn),

∀s ∈ A ∀t ∈ B f(s) 6= f(t)

for some choice of a function within the given equivalence class.

Proof. Given ε > 0, we introduce a set Gε of all f such that there exist
measurable A1 ⊂ A, B1 ⊂ B satisfying

m(A \ A1) < ε , m(B \B1) < ε , ess infs∈A1,t∈B1 |f(s)− f(t)| > 0 .

It is sufficient to prove that a typical f belongs to all Gε. We note that Gε is
a dense set (even for ε = 0) by the argument of the proof of 12a5. It remains
to prove that Gε is open (for ε > 0, of course).

Given f ∈ Gε and A1, B1, we take δ > 0 such that m(A \ A1) ≤ ε − δ,
m(B \ B1) ≤ ε − δ and ess infs∈A1,t∈B1 |f(s) − f(t)| ≥ δ. For arbitrary
g ∈ L1(→ Rn) we have

m{t : |f(t)− g(t)| ≥ δ/3} ≤ 3

δ
‖f − g‖ .

If ‖f−g‖ < δ2/3 then the set Z = {t : |f(t)−g(t)| ≥ δ/3} satisfies m(Z) < δ.
Taking A2 = (A\A1)\Z, B2 = (B\B1)\Z we get m(A\A2) ≤ m(A\A1)+δ <
ε, m(B \B2) < ε, and ess infs∈A2,t∈B2 |f(s)− f(t)| ≥ δ − 2δ/3 > 0.

Proof of Prop. 12e5. We correct f on a null set getting f
(
[0, 1/2)

)
∩f
(
[1/2, 1)

)
=

∅. Then we correct f |[0,1/2) (without increasing its image) getting f
(
[0, 1/4)

)
∩

f
(
[1/4, 1/2)

)
= ∅. And so on.
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Instead of the support, now we examine the distribution of f ; this is a
probability measure µf on Rn defined by

µf (B) = m
(
f−1(B)

)
for Borel sets B ⊂ Rn .

In general, a probability measure on Rn decomposes into purely atomic part
(concentrated on a finite or countable set of atoms), absolutely continuous
part (that has a density w.r.t. Lebesgue measure) and singular part (concen-
trated on an m-null set but atom-free).

By 12e5, µf is typically atom-free.
By 12e3, µf is typically singular.

Integrability of f implies
∫
Rn |x|µf (dx) <∞.

The set P1(Rn) of all (Borel) probability measures on Rn satisfying∫
Rn |x|µ(dx) <∞ is endowed with the so-called transportation metric

ρ(µ1, µ2) = inf
f1,f2:µf1=µ1,µf2=µ2

ρ(f1, f2) .

Note that a sequence of purely atomic measures can converge to an absolutely
continuous measure; and a sequence of absolutely continuous measures can
converge to a purely atomic measure. In fact, each of the three sets of
measures (purely atomic, singular, and absolutely continuous) is dense in
P1(Rn).

12e7 Proposition. The map

L1(→ Rn) 3 f 7→ µf ∈ P1(Rn)

is continuous and open.

Proof. Continuity (and even Lip(1)) is evident; openness will be proved.
Let µ1 = µf1 and ρ(µ1, µ2) ≤ ε; we need f2 close to f1 such that µ2 = µf2 .

We take g1, g2 ∈ L1(→ Rn) such that

µ1 = µg1 , µ2 = µg2 , ρ(g1, g2) ≤ 2ε .

We introduce

Ak = f−11

(
[kε, kε+ ε)

)
, Bk = g−11

(
[kε, kε+ ε)

)
for k ∈ Z and note that m(Ak) = m(Bk) (since µf1 = µg1). For each k
such that m(Ak) > 0 we take a measure preserving map ϕk : Ak → Bk (try
increasing ϕk such that ∀x m

(
Ak ∩ (−∞, x]

)
= m

(
Bk ∩ (−∞, ϕk(x)]

)
). We

define f2 by
f2(t) = g2(ϕk(t)) for t ∈ Ak
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and note that µf2 = µg2 = µ2 since for every Borel set B ⊂ R,

m
(
f−12 (B)

)
=
∑
k

m
(
f−12 (B) ∩ Ak

)
=
∑
k

m{s ∈ Ak : g2(ϕk(s)) ∈ B} =

=
∑
k

m{t ∈ Bk : g2(t) ∈ B} = m
(
g−12 (B)

)
.

It remains to prove that f2 is close to f1. We have

ρ(f1, f2) =

∫
|f1 − f2| dm =

∑
k

∫
Ak

|f1 − f2| dm ≤

≤
∑
k

∫
Ak

(|f1 − kε|+ |kε− f2|) dm ≤ ε+
∑
k

∫
Ak

(|f2 − kε| dm =

= ε+
∑
k

∫
Bk

(|g2−kε| dm ≤ ε+
∑
k

∫
Bk

(
|g2−g1|+|g1−kε|

)
dm ≤ 2ε+ρ(g1, g2) ≤ 4ε .

12e8 Exercise. A typical measure is atom-free.
Prove it.

12e9 Exercise. A typical measure is singular.
Prove it.

Minkowski (or “box”) dimension of a measure is defined by

dimM µ = lim inf
µ(B)→1

dimMB , dimM µ = lim inf
µ(B)→1

dimMB

where B runs over all Borel sets.
It appears that1 for quasi all µ ∈ P1(Rn),

dimM µ = 0 , dimM µ = n .

By 12e7 (and 12b2, for quasi all f ∈ L1(→ Rn),

dimM µf = 0 , dimM µf = n .

1J. Myjak, R. Rudnicki (2002) “On the box dimension of typical measures”, Monatsh.
Math. 136, 1143–150.
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Hints to exercises

12a3: (a) try dist(A, x(1, 2, . . . )); (b) use (a).

12c1: 5d5 can help.

12c4: similar to 12a3.

12c6: similar to 12a5.

12d10: similar to 12a5.

12e2: recall 12a3.

12e8: no, 12e5 is of no help (I think so). Rather, prove that all µ satisfying
∀x µ({x}) < ε are an open set.

12e9: use 12e3 and 12b5 if you like. Or do not.
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