
Tel Aviv University, 2012 Measurability and continuity 76

5 Random connected components

5a Connected sets among closed sets . . . . . . . . 76

5b Connected components . . . . . . . . . . . . . . . 78

5c Counting the connected components . . . . . . . 80

5d Classifying the connected components: random
knots . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Hints to exercises . . . . . . . . . . . . . . . . . . . . . . . 85

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5a Connected sets among closed sets

Recall some topological notions and facts.
A metrizable space X is connected, if Clopen(X) = {∅, X}.
A subset Y ⊂ X is connected if it is itself a connected space. Note that

(5a1) Clopen(Y ) ⊃ {A ∩ Y : A ∈ Clopen(X)} ;

in general, these are not equal (indeed, it happens routinely that X is con-
nected while Y is not). For a connected Y ,

(5a2) ∀A ∈ Clopen(X)
(
Y ⊂ A ∨ Y ⊂ X \ A

)
.

For arbitrary Y , choosing a compatible metric ρ on X and denoting as before
dist(x,A) = inf{ρ(x, a) : a ∈ A}, we have

Clopen(Y ) = {A ⊂ Y : A ∩ (Y \ A) = ∅ ∧ (Y \ A) ∩ A = ∅ } =

= {A ⊂ Y : ( ∀a ∈ A dist(a, Y \A) > 0) ∧ (∀b ∈ Y \A dist(b, A) > 0 ) } .

For every A ∈ Clopen(Y ) there exist open sets U, V ⊂ X such that U∩V = ∅,
U ∩ Y = A and V ∩ Y = Y \ A; namely, we may take

U =
⋃
a∈A

B◦
(
a, 0.5ρ(a, Y \ A)

)
, V =

⋃
b∈Y \A

B◦
(
b, 0.5ρ(b, A)

)
.

(Here B◦(a, r) = {x : ρ(x, a) < r}.) Thus,

(5a3) Clopen(Y ) =

= {Y ∩ U : U, V are open in X ∧ U ∩ V = ∅ ∧ U ∪ V ⊃ Y } .
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5a4 Proposition. For every compact metrizable space X the set

{F ∈ F(X) : F is connected }

is Borel measurable.

From now on (till 5a9) X is compact, and (Un)n is a sequence1 of open
subsets of X such that for all E,F ∈ F(X),

(5a5) E ∩ F = ∅ =⇒ ∃m,n (Um ∩ Un = ∅ ∧ E ⊂ Um ∧ F ⊂ Un ) .

5a6 Core exercise. Prove existence of such (Un)n.

Note that Clopen(X) ⊂ {U1, U2, . . . }; and by the way, it shows that
Clopen(X) is at most countable (provided that X is compact).2

5a7 Core exercise. For every F ∈ F(X),

Clopen(F ) = {F ∩ Um : Um ∩ Un = ∅ ∧ Um ∪ Un ⊃ F} .

Prove it.

5a8 Core exercise. A closed set F ⊂ X is connected if and only if

∀m,n
(
(Um ∩Un = ∅ ∧ Um ∪Un ⊃ F ) =⇒ (Um ∩ F = ∅ ∨ Un ∩ F = ∅ )

)
.

Prove it.

5a9 Core exercise. Prove Prop. 5a4.

Prop. 5a4 fails for Polish (not just compact) spaces. In particular, it fails
if X is an infinite-dimensional separable Hilbert space.3

Does 5a4 hold for X = Rd ? I do not know!4 If you feel enthusiastic to
reduce connectedness of a closed set to some property of its compact subsets,
take into account the following instructive example of a connected closed
subset of R2:

1“Countable superbase”, if you like.
2For Polish X, Clopen(X) need not be countable (try a discrete space).
3This is basically the phenomenon mentioned before 4d10.
4I only know that {F ∈ F(Rd) : F is connected} is coanalytic, since its complement

is the image of the Borel set {(F1, F2) : F1 ∩ F2 = ∅, F1 6= ∅, F2 6= ∅} (recall 4d15) under
the Borel map (F1, F2) 7→ F1 ∪ F2.
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5a10 Remark. As a palliative we may treat a random closed subset of Rd via
the one-point compactification Rd ∪{∞} (including∞ into each unbounded
closed set). Then all unbounded connected components (if any) are glued
together.

5b Connected components

Consider two equivalence relations on a metrizable space X: points x, y ∈ X
are equivalent, when

x, y ∈ Y for some connected Y ⊂ X ;(5b1)

∀A ∈ Clopen(X)
(
x ∈ A ⇐⇒ y ∈ A

)
.(5b2)

Clearly, (5b1) implies (5b2) (recall (5a2)). In general they are not equivalent;
an example:

Equivalence classes for (5b1) are called connected components (of X); for
(5b2) — quasiconnected components. In general, every quasiconnected com-
ponent decomposes into connected components. But a compact X is simpler.

5b3 Lemma. For a compact X, (5b1) and (5b2) are equivalent.

Proof. Let Y be an equivalence class for (5b2); we’ll prove that Y is con-
nected. By (5a3) it is sufficient to prove Y ⊂ U or Y ⊂ V whenever open
U, V ⊂ X satisfy U ∩ V = ∅ and U ∪ V ⊃ Y . Compactness gives us
A ∈ Clopen(X) such that Y ⊂ A ⊂ U∪V . Thus, A∩U = A\V ∈ Clopen(X).
All points of Y being (5b2)-equivalent, we get Y ⊂ A∩U or Y ⊂ X \(A∩U);
accordingly, Y ⊂ U or Y ⊂ V .

Note that a compact X can have uncountably many connected compo-
nents (try the Cantor set).

5b4 Proposition. The following subset of F(X)×F(X) is Borel measurable,
provided that X is compact:

{(E,F ) : E is a connected component of F} .

Choosing a compatible metric ρ on X we define for E,F ∈ F(X)

d 6⊂(E,F ) = sup
x∈E

dist(x, F ) = sup
x∈E

inf
y∈F

ρ(x, y) = inf{r > 0 : E ⊂ F+r} ,

dH(E,F ) = max
(
d 6⊂(E,F ), d6⊂(F,E)

)
= inf{r > 0 : E ⊂ F+r ∧ F ⊂ E+r}
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(as usual, inf ∅ = +∞); dH is a metric on F(X) \ {∅}, — the well-known
Hausdorff metric.1

5b5 Lemma. d6⊂ : F(X)× F(X)→ [0,∞] is a Borel function.

Proof. We take a sequence (xn)n dense in X and note that

d 6⊂(E,F ) = inf
r>0

sup
n:dist(xn,E)≤ε

dist(xn, F )

and dist(xn, ·) is a Borel function by 4d8(a).

Proof of Prop. 5b4. For E,F ∈ F(X), by 5b3, E is a connected component
of F if and only if

(a) E is connected, and
(b) E ⊂ F , and E is the intersection of all A ∈ Clopen(F ) such that

A ⊃ E.
Condition (a) leads to a Borel set by Prop. 5a4; we’ll prove the same for (b).
By compactness, (b) is equivalent to

(b1) for every ε > 0 there exists A ∈ Clopen(F ) such that A ⊃ E and
d 6⊂(A,E) ≤ ε.
We choose (Un)n satisfying (5a5). By (5a7), (b1) is equivalent to

(b2) for every ε > 0 there exist m,n such that Um∩Un = ∅, Um∪Un ⊃ F ,
F ∩ Um ⊃ E and d 6⊂(F ∩ Um, E) ≤ ε.
It remains to check, for given m,n satisfying Um ∩ Un = ∅, that each of the
following three conditions leads to a Borel set:

(c) F ⊂ Um ∪ Un,
(d) E ⊂ F \ Un,
(e) d6⊂(F \ Un, E) ≤ ε.

We rewrite (c), (d) as
(c1) F ∩ (X \ (Um ∪ Un)) = ∅,
(d1) d 6⊂(E,F \ Un) = 0.

For (c1) we use 4d12(b). For (d1) and (e) we use 5b5, taking into account
that the map F 7→ F \ Un = F ∩ (X \ Un) is Borel measurable by 4d14.

We conclude.

1In fact, the Hausdorff metric on a compact X turns F(X) into a compact metric space
whose Borel σ-algebra coincides with that of (4d2). The set of connected components of
X need not be closed in (F(X), dH); an example: [−1, 0] ∪ {1, 12 ,

1
3 , . . . }. For a Polish X,

the metric space (F(X), dH) is complete but generally nonseparable (try a discrete X).
See also Sect. 2 in Beer’s article (cited in footnote 5 on page 71).
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5b6 Theorem. Let X be a compact metrizable space and S a random closed
subset of X. Then the set of all connected components of S 1 is a random
Borel subset of the standard2 Borel space F(X).

5c Counting the connected components

5c1 Core exercise. Let S be a random Borel subset of a standard Borel
space. Then {ω : |S(ω)| ≤ n} is measurable for every n. (Here |S(ω)| is the
number of points in S(ω).)

Prove it.

By 5c1 (and Theorem 5b6), given a random closed set in a compact
metrizable X, the number of its connected components is a random variable
(with values in {0, 1, 2, . . . }∪{∞}). In this sense we may count the connected
components.3 Given a Borel set B ⊂ F(X), we may count the connected
components belonging to B (think, why). For example we may count the
connected components contained in a given ball, or intersecting a given ball,
etc.

5c2 Core exercise. Let S be a random closed subset of Rd. Then the set of
all bounded connected components of S is a random Borel subset of F(Rd).

Prove it.

5d Classifying the connected components: random knots

A knot is a subset of R3 homeomorphic to a circle.

1I mean the set of all connected components of S(ω) as a function of ω.
2Recall 4d5.
3The set of ω such that S(ω) is uncountable (and therefore of cardinality continuum, see

Kechris, Th. (13.6) or Srivastava, Th. 4.3.5) is also measurable, see Kechris, Th. (29.19).
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Knots K1, K2 are of the same type (in other words, equivalent) if h(K1) = K2

for some homeomorphism h : R3 → R3.1 A knot is tame if it is equivalent to
a polygonal knot. Or, equivalently, to a smooth knot (continuously differen-
tiable). Otherwise it is a wild knot.2 All knots that lie in a plane are of the
same type (the trivial type; the unknot).3 This is a deep theorem in general,
but relatively simple for tame knots.

All tame knot types are a countable set.4

5d1 Proposition. Each knot type is a universally measurable5 subset of
F(R3).

Thus, all tame knots are also a universally measurable set.
By 5c2 and 5d1, given a random closed set in R3, we may count its

connected components that are (a) tame knots; (b) tame knots of a given
type; (c) tame knots of a given type that are contained in a given ball; etc.

You may think about a random smooth map f : R3 → R2 (or R3 → C)
such that almost surely, f is regular (that is, rank df(·) = 2) at all x satisfying
f(x) = 0. Then all bounded connected components of the random closed set
f−1(0) are tame knots (almost surely).

The group Homeo(R3) of all homeomorphisms R3 → R3 acts on the
standard Borel space F(R3).

Here is a generalization of Prop. 5d1.

5d2 Proposition. For every F ∈ F(R3) its orbit {h(F ) : h ∈ Homeo(R3)}
is a universally measurable subset of F(R3).

5d3 Core exercise. The set C(R3 → R3) of all continuous maps R3 → R3

endowed with the σ-algebra generated by evaluations f 7→ f(x) is a standard
Borel space.

Prove it.

5d4 Core exercise. f(x) is jointly measurable in f ∈ C(R3 → R3) and
x ∈ R3.

Prove it.

1See for instance Sect. 1.1 in: R.H. Crowell, R.H. Fox, “Introduction to knot theory”,
Springer 1963.

2Crowell and Fox, Sect. 1.2.
3Crowell and Fox, Sect. 1.2.
4Crowell and Fox, Chapter I, Exercise 5. In fact, they are a semigroup isomorphic to

{1, 2, 3, . . . } with multiplication. By the way, some wild knots are infinite products of
tame knots.

5In fact, Borel measurable, but this is harder to prove.
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5d5 Core exercise. The composition g ◦ f ∈ C(R3 → R3) is jointly mea-
surable in f, g ∈ C(R3 → R3).

Prove it.

We embed the set Homeo(R3) into C(R3 → R3)×C(R3 → R3) as follows:

h 7→ (h, h−1) .

By 5d5 the image { (f, g) : f ◦ g = id ∧ g ◦ f = id } is a Borel set, there-
fore a standard Borel space. We endow Homeo(R3) with the corresponding
σ-algebra and observe that

(5d6) Homeo(R3) is a standard Borel space.1

5d7 Extra exercise. Homeo(R3) is both a Borel subset and a measurable
subspace of C(R3 → R3).

Prove it.2

(By the way, it follows that the map f 7→ f−1 is Borel measurable on
Homeo(R3) treated as a subset of C(R3 → R3).)

5d8 Core exercise. Let F ⊂ R3 be a compact set, then the map

C(R3 → R3) 3 f 7→ f(F ) ∈ F(R3)

is Borel measurable.
Prove it.

Thus, the orbit {h(F ) : h ∈ Homeo(R3)} is the image of the standard
Borel space Homeo(R3) under the Borel map h 7→ h(F ).

Here is a topology-free counterpart of Def. 3e1.

5d9 Definition. A subset of a countably separated measurable space is an-
alytic if it is the image of some standard Borel space under some measurable
map.

Does 5d9 conflict with 3e1? No, it does not.

5d10 Lemma. For every subset A of a separable metrizable space, the fol-
lowing two conditions are equivalent:

(a) A is the image of some Polish space under some continuous map;
(b) A is the image of some standard Borel space under some Borel map.

1It is in fact a Polish group (and therefore, by 4d7, a standard Borel space).
2In fact, this follows from standardness by a general theorem; but you are asked to

prove it explicitly.
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Proof. (a)=⇒(b): the Polish space is a standard Borel space by 4d7, and the
continuous map is Borel measurable.

(b)=⇒(a): we may assume that the standard Borel space is a Borel sub-
set of the Cantor set, or even the whole Cantor set (extend the map by a
constant. . . ); it remains to use Prop. 3d1.

And here is a counterpart of Theorem 3f22.

5d11 Theorem. Analytic sets in countably separated measurable spaces are
universally measurable.

Proof. Let (X,A) be a standard Borel space, (Y,B) a countably separated
measurable space, f : X → Y a measurable map, and µ a probability measure
on (Y,B); we have to prove that f(X) is µ-measurable.

Without loss of generality we may assume that (Y,B) is a Borel space.
Proof: first, by 1d35, (Y,B1) is a Borel space for some B1 ⊂ B; second, f
is measurable from (X,A) to (Y,B1); third, every (µ|B1)-measurable set is
µ-measurable.

By 1d40 we may assume that Y ⊂ R. Moreover, we may assume that
Y = R. Proof: we define a probability measure ν on R by ν(B) = µ(B∩Y ) for
B ∈ B(R) and observe that every ν-measurable subset of Y is µ-measurable.

It remains to use Lemma 5d10 and Theorem 3f22.

Propositions 5d2 and 5d1 follow.
Proposition 5d2 (and its proof) generalizes readily to arbitrary locally

compact separable metrizable spaces (in place of R3).
So, we may count tame knots. What about wild knots?

5d12 Proposition. All knots are a universally measurable subset of F(R3).

Thus, wild knots are also a universally measurable set.
The circle is a compact metrizable space; knots are its homeomorphic

images in R3.

5d13 Core exercise. Let K be a compact metrizable space, and (similarly
to 5d3) C(K → R3) the standard Borel space of continuous maps. Then
the set of all homeomorphisms f : K → f(K) ⊂ R3 is a Borel subset of
C(K → R3).

Prove it.

Similarly to 5d8, the map

C(K → R3) 3 f 7→ f(K) ∈ F(R3)
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is Borel measurable. Its image

{F : F is homeomorphic to K} ⊂ F(R3)

is analytic, thus, universally measurable. Prop. 5d12 follows.
In fact, the set of all knots is Borel measurable.1

You may think also about random links, and a lot of other random geo-
metric objects.

1The same holds for subsets of a given σ-compact separable metrizable space X, that
are homeomorphic to a given compact metrizable space K; see: C. Ryll-Nardzewski, “On
a Freedman’s problem”, Fund. Math. 57 (1965), 273–274. The corresponding Borel com-
plexity is not bounded in K even if X = [0, 1]× [0, 1]; see Fact 3.12 in: A. Marcone, “Com-
plexity of sets and binary relations in continuum theory: a survey” (2005). For K = S1 this
Borel set is Fσδ and not Gδσ; see Lemma 6.2 and Theorem 8.5 in: R. Camerlo, U.B. Darji,
A. Marcone, “Classification problems in continuum theory”, Trans. AMS 357:11, 4301–
4328 (2005).
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Hints to exercises

5a6: consider a countable base and all finite unions of its sets.

5c1: use 3f24, taking into account that the Borel space is countably separated.

5c2: recall 5a10.

5d3: recall 2c10(c).

5d4: similar to (4b4).

5d5: use 5d4.

5d8: use a dense sequence.
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