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Analytic sets shed new light on Borel sets. Standard Borel spaces are
somewhat similar to compact topological spaces.

6a Separation theorem

The first step toward deeper theory of Borel sets.

6a1 Theorem. 1 For every pair of disjoint analytic2 subsets A,B of a count-
ably separated measurable space (X,A) there exists C ∈ A such that A ⊂ C
and B ⊂ X \ C.

Rather intriguing: (a) the Borel complexity of C cannot be bounded
apriori; (b) the given A,B give no clue to any Borel complexity. How could
it be proved?

We say that A is separated from B if A ⊂ C and B ⊂ X \ C for some
C ∈ A.

6a2 Core exercise. If An is separated from B for each n = 1, 2, . . . then
A1 ∪ A2 ∪ . . . is separated from B.

Prove it.

6a3 Core exercise. If Am is separated from Bn for all m,n then A1∪A2∪. . .
is separated from B1 ∪B2 ∪ . . .

Prove it.

1“The first separation theorem for analytic sets”, or “the Lusin separation theorem”;
see Srivastava, Sect. 4.4 or Kechris, Sect. 14.B. To some extent, it is contained implicitly
in the earlier Souslin’s proof of Theorem 6a6.

2Recall 5d9.
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6a4 Core exercise. It is sufficient to prove Theorem 6a1 for X = R, A =
B(R).

Prove it.

Proof of Theorem 6a1. According to 6a4 we assume that X = R, A = B(R).
By 5d10 we take Polish spaces Y, Z and continuous maps f : Y → R, g :
Z → R such that A = f(Y ), B = g(Z). Similarly to the proof of 4c9 we
choose a compatible metric on Y and a countable base E ⊂ 2Y consisting of
bounded sets; and similarly F ⊂ 2Z .

Assume the contrary: f(Y ) = A is not separated from g(Z) = B. Using
6a3 we find U1 ∈ E , V1 ∈ F such that f(U1) is not separated from g(V1).
Using 6a3 again we find U2 ∈ E , V2 ∈ F such that U2 ⊂ U1, diamU2 ≤
0.5 diamU1, V 2 ⊂ V1, diamV2 ≤ 0.5 diamV1, and f(U2) is not separated
from g(V2). And so on.

We get U1 ⊃ U1 ⊃ U2 ⊃ U2 ⊃ . . . and diamUn → 0; by completeness,
U1∩U2∩· · · = {y} for some y ∈ Y . Similarly, V1∩V2∩· · · = {z} for some z ∈
Z. We note that f(y) 6= g(z) (since f(y) ∈ A and g(z) ∈ B) and take ε > 0
such that

(
f(y)− ε, f(y) + ε

)
∩
(
g(z)− ε, g(z) + ε

)
= ∅. Using continuity we

take n such that f(Un) ⊂
(
f(y)−ε, f(y)+ε

)
and g(Vn) ⊂

(
g(z)−ε, g(z)+ε

)
;

then f(Un) is separated from g(Vn), — a contradiction.

6a5 Corollary. Let (X,A) be a countably separated measurable space, and
A ⊂ X an analytic set. If X \ A is also an analytic set then A ∈ A.

Proof. Follows immediately from Theorem 6a1.

6a6 Theorem. (Souslin) Let (X,A) be a standard Borel space. The follow-
ing two conditions on a set A ⊂ X are equivalent:1

(a) A ∈ A;
(b) both A and X \ A are analytic.

Proof. (b)=⇒(a): by 6a5; (a)=⇒(b): by 5d9 and 2b11(a).

6b Borel bijections

An invertible homomorphism is an isomorphism, which is trivial. An invert-
ible Borel map is a Borel isomorphism, which is highly nontrivial.

6b1 Core exercise. Let (X,A) be a standard Borel space, (Y,B) a count-
ably separated measurable space, and f : X → Y a measurable bijection.
Then f is an isomorphism (that is, f−1 is also measurable).2

1See also Footnote 1 on page 70.
2A topological counterpart: a continuous bijection from a compact space to a Hausdorff

space is a homeomorphism (that is, the inverse map is also continuous).
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Prove it.

6b2 Corollary. A measurable bijection between standard Borel spaces is an
isomorphism.

6b3 Corollary. Let (X,A) be a standard Borel space and B ⊂ A a count-
ably separated sub-σ-algebra; then B = A.1 2

Thus, standard σ-algebras are never comparable.3

6b4 Core exercise. Let R1, R2 be Polish topologies on X.
(a) If R2 is stronger than R1 then B(X,R1) = B(X,R2) (that is, the

corresponding Borel σ-algebras are equal).
(b) If R1 and R2 are stronger than some metrizable (not necessarily Pol-

ish) topology then B(X,R1) = B(X,R2).
Prove it.

A lot of comparable Polish topologies appeared in Sect. 3c. Now we
see that the corresponding Borel σ-algebras must be equal. Another exam-
ple: the strong and weak topologies on the unit ball of a separable infinite-
dimensional Hilbert space. This is instructive: the structure of a standard
Borel space is considerably more robust than a Polish topology.

In particular, we upgrade Theorem 3c12 (as well as 3c15 and 3d1).

6b5 Theorem. For every Borel subset B of the Cantor set X there exists a
Polish topology R on X, stronger than the usual topology on X, such that
B is clopen in (X,R), and B(X,R) is the usual B(X).

Here is another useful fact.

6b6 Core exercise. Let (X,A) be a standard Borel space. The following
two conditions on A1, A2, · · · ∈ A are equivalent:

(a) the sets A1, A2, . . . generate A;
(b) the sets A1, A2, . . . separate points.

Prove it.

The graph of a map f : X → Y is a subset {(x, f(x)) : x ∈ X} of X ×Y .
Is measurability of the graph equivalent to measurability of f?

6b7 Proposition. Let (X,A), (Y,B) be measurable spaces, (Y,B) countably
separated, and f : X → Y measurable; then the graph of f is measurable.

1A topological counterpart: if a Hausdorff topology is weaker than a compact topology
then these two topologies are equal.

2See also the footnote to 5d7.
3Similarly to compact Hausdorff topologies.
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6b8 Core exercise. It is sufficient to prove Prop. 6b7 for Y = R, B = B(R).
Prove it.

Proof of Prop. 6b7. According to 6b8 we assume that Y = R, B = B(R).
The map

X × R 3 (x, y) 7→ f(x)− y ∈ R

is measurable (since the map R × R 3 (z, y) 7→ z − y ∈ R is). Thus,
{(x, y) : f(x)− y = 0} is measurable.

Here is another proof, not using 6b8.

Proof of Prop. 6b7 (again). We take B1, B2, · · · ∈ B that separate points and
note that

y = f(x) ⇐⇒ (x, y) ∈
⋂
n

((
f−1(Bn)×Bn

)
∪
(
(X \f−1(Bn))×(Y \Bn)

))
since y = f(x) if and only if ∀n

(
y ∈ Bn ⇐⇒ f(x) ∈ Bn

)
.

6b9 Extra exercise. If a measurable space (Y,B) is not countably separated
then there exist a measurable space (X,A) and a measurable map f : X → Y
whose graph is not measurable.

Prove it.

6b10 Proposition. Let (X,A), (Y,B) be standard Borel spaces and f :
X → Y a function. If the graph of f is measurable then f is measurable.

Proof. The graph G ⊂ X × Y is itself a standard Borel space by 2b11. The
projection g : G → X, g(x, y) = x, is a measurable bijection. By 6b2, g is
an isomorphism.Thus, f−1(B) = g

(
G ∩ (X ×B)

)
∈ A for B ∈ B.

Here is a stronger result.

6b11 Proposition. Let (X,A), (Y,B) be countably separated measurable
spaces and f : X → Y a function. If the graph of f is analytic1 then f is
measurable.

Proof. Denote the graph by G. Let B ∈ B, then G ∩ (X × B) is analytic
(think, why), therefore its projection f−1(B) is analytic. Similarly, f−1(Y \B)
is analytic. We note that f−1(Y \ B) = X \ f−1(B), apply 6a5 and get
f−1(B) ∈ A.

6b12 Extra exercise. Give an example of a nonmeasurable function with
measurable graph, between countably separated measurable spaces.

1As defined by 5d9, taking into account that X × Y is countably separated by 1d24.
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6c A non-Borel analytic set of trees

An example, at last. . .

We adapt the notion of a tree to our needs as follows.

6c1 Definition. (a) A tree consists of an at most countable set T of “nodes”,
a node 0T called “the root”, and a binary relation “ ” on T such that for
every s ∈ T there exists one and only one finite sequence (s0, . . . , sn) ∈
T ∪ T 2 ∪ T 3 ∪ . . . such that 0T = s0  s1  · · · sn−1  sn = s.

(b) An infinite branch of a tree T is an infinite sequence (s0, s1, . . . ) ∈ T∞
such that 0T = s0  s1  . . . ; the set [T ] of all infinite branches is called
the body of T .

(c) A tree T is pruned if every node belongs to some (at least one) infinite
branch. (Or equivalently, ∀s ∈ T ∃t ∈ T s t.)

We endow the body [T ] with a metrizable topology, compatible with the
metric

ρ
(
(sn)n, (tn)n

)
= 2− inf{n:sn 6=tn} .

The metric is separable and complete (think, why); thus, [T ] is Polish.

6c2 Example. The full binary tree {0, 1}<∞ =
⋃
n=0,1,2,...{0, 1}n:

Its body is homeomorphic to the Cantor set {0, 1}∞.

6c3 Example. The full infinitely splitting tree: {1, 2, . . . }<∞. Its body is
homeomorphic to {1, 2, . . . }∞, as well as to [0, 1] \Q (the space of irrational
numbers), since these two spaces are homeomorphic:

{1, 2, . . . }∞ 3 (k1, k2, . . . ) 7→
1

k1 +
1

k2 + . . .

Let T be a tree and T1 ⊂ T a nonempty subset such that ∀s ∈ T ∀t ∈
T1(s  t =⇒ s ∈ T1). Then T1 is itself a tree, — a subtreee of T .
Clearly, [T1] ⊂ [T ] is a closed subset.

6c4 Definition. (a) A regular scheme on a set X is a family (As)s∈T of
subsets of X indexed by a tree T , satisfying As ⊃ At whenever s t.

(b) A regular scheme (As)s∈T on a metric space X, indexed by a pruned
tree T , has vanishing diameter if diam(Asn) → 0 (as n → ∞) for every
(sn)n ∈ [T ].
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6c5 Example. Dyadic intervals [ k
2n
, k+1

2n
] ⊂ [0, 1], naturally indexed by the

full binary tree, are a vanishing diameter scheme.

For every (sn)n ∈ [T ] we have Asn ↓ {x} for some x ∈ [0, 1], which gives a
continuous map from the Cantor set onto [0, 1]. Note that the map is not
one-to-one.

Let (As)s∈T be a regular scheme on X, and x ∈ X. The set Tx = {s ∈
T : As 3 x}, if not empty, is a subtree of T . The following two conditions on
the scheme are equivalent (think, why):

Tx is a pruned tree for every x ∈ X;(6c6a)

A0T = X , and As =
⋃
t:s t

At for all s ∈ T .(6c6b)

Let X be a complete metric space, and (Fs)s∈T a vanishing diameter
scheme of closed sets on X. Then for every (sn)n ∈ [T ] we have Fsn ↓ {x} for
some x ∈ X. We define the associated map f : [T ]→ X by Fsn ↓ {f

(
(sn)n

)
}.

This map is continuous (think, why), and f−1({x}) = [Tx] for all x ∈ X (look
again at 6c5); here, if x /∈ F0T then Tx = ∅, and we put [∅] = ∅.

If the scheme satisfies (6c6) then f([T ]) = X (since [Tx] 6= ∅ for all x).

6c7 Core exercise. On every compact metric space there exists a vanishing
diameter scheme of closed sets, satisfying (6c6), indexed by a finitely splitting
tree (that is, the set {t : s t} is finite for every s).

Prove it.

It follows easily that every compact metrizable space is a continuous image
of the Cantor set.

6c8 Core exercise. On every complete separable metric space there exists
a vanishing diameter scheme of closed sets, satisfying (6c6).

Prove it.

It follows easily that every Polish space is a continuous image of the space
of irrational numbers. And therefore, every analytic set (in a Polish space)
is also a continuous image of the space of irrational numbers!
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An analytic set A in a Polish space Y is the image of some Polish space
X under some continuous map ϕ : X → Y ;

A = ϕ(X) ⊂ Y .

We choose complete metrics on X and Y . According to 6c8 we take on X a
vanishing diameter scheme of closed sets (Fs)s∈T satisfying (6c6).

6c9 Core exercise. The family
(
ϕ(Fs)

)
s∈T is a vanishing diameter scheme

of closed sets on Y . (Here ϕ(Fs) is the closure of the image.)
Prove it.

We consider the associated maps f : [T ] → X and g : [T ] → Y . Clearly,
ϕ ◦ f = g, f([T ]) = X, and therefore g([T ]) = A. We conclude.

6c10 Proposition. For every analytic set A in a Polish space X there exists
a vanishing diameter scheme (Fs)s∈T of closed sets on X whose associated
map f satisfies f([T ]) = A.

And further. . .

6c11 Proposition. A subset A of a Polish space X is analytic if and only if

A =
⋃

(sn)n∈[T ]

⋂
n

Fsn

for some regular scheme (Fs)s∈T of closed (or Borel) sets Fs ⊂ X indexed by
a pruned tree T .1

Proof. “Only if”: follows from 6c10.
“If”: A is the projection of the Borel set of pairs

(
(sn)n, x

)
∈ [T ] × X

satisfying x ∈ Fsn for all n.

We return to 6c10. The relation f([T ]) = A, in combination with f−1({x}) =
[Tx], gives A = {x : [Tx] 6= ∅}, that is,

A = {x : Tx ∈ IF(T )}

where IF(T ) is the set of all subtrees of T that have (at least one) infinite
branch. (Such trees are called ill-founded.) Thus, every analytic set A ⊂ X
is the inverse image of IF(T ) under the map x 7→ Tx for some regular scheme
of closed sets.

The set Tr(T ) of all subtrees of T (plus the empty set) is a closed subset
of the space 2T homeomorphic to the Cantor set (unless T is finite). Thus
IF(T ) ⊂ Tr(T ) is a subset of a compact metrizable space.

1In other words: a set is analytic if and only if it can be obtained from closed sets by
the so-called Souslin operation; see Srivastava, Sect. 1.12 or Kechris, Sect. 25.C.
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6c12 Core exercise. IF(T ) is an analytic subset of Tr(T ).
Prove it.

We return to a regular scheme of closed sets and the corresponding map

X 3 x 7→ Tx ∈ Tr(T ) .

6c13 Core exercise. Let B ⊂ 2T and A = {x : Tx ∈ B} ⊂ X.
(a) If B is clopen then A belongs to Π2 ∩ Σ2 (that is, both Gδ and Fσ).
(b) If B ∈ Πn then A ∈ Πn+2. If B ∈ Σn then A ∈ Σn+2. (Here

n = 1, 2, . . . )
Prove it.

6c14 Proposition. Let T = {1, 2, . . . }<∞ be the full infinitely splitting tree.
Then the subset IF(T ) of Tr(T ) does not belong to the algebra ∪nΣn.

Proof. By the hierarchy theorem (see Sect. 1c), there exists a Borel subset
A of the Cantor set such that A /∈ ∪nΣn. By Prop. 3e2, A is analytic.
By Prop. 6c10, A = {x : Tx ∈ IF(T1)} for some tree T1 and some scheme.
Applying 6c13 to B = IF(T1) we get IF(T1) /∈ ∪nΣn in 2T , therefore in Tr(T ).
It remains to embed T1 into T .

A similar argument applied to the transfinite Borel hierarchy shows that
IF(T ) is a non-Borel subset of Tr(T ). Thus, Tr(T ) contains a non-Borel
analytic set. The same holds for the Cantor set (since Tr(T ) embeds into 2T )
and for [0, 1] (since the Cantor set embeds into [0, 1]).1

6c15 Extra exercise. Taking for granted that IF(T ) is not a Borel set (for
T = {1, 2, . . . }<∞), prove that the real numbers of the form

1

k1 +
1

k2 + . . .

such that some infinite subsequence (ki1 , ki2 , . . . ) of the sequence (k1, k2, . . . )
satisfies the condition: each element is a divisor of the next element, are a
non-Borel analytic subset of R.2

1In fact, the same holds for all uncountable Polish spaces, as well as all uncountable
standard Borel spaces (these are mutually isomorphic).

2Lusin 1927.



Tel Aviv University, 2012 Measurability and continuity 94

6d Borel injections

The second step toward deeper theory of Borel sets.

6d1 Theorem. 1 Let X, Y be Polish spaces and f : X → Y a continuous
map. If f is one-to-one then f(X) is Borel measurable.

If a tree has an infinite branch then, of course, this tree is infinite and
moreover, of infinite height (that is, for every n there exists an n-element
branch). The converse does not hold in general (think, why), but holds for
finitely splitting trees (“König’s lemma”). In general the condition Tx ∈
IF(T ) (that is, [Tx] 6= ∅) cannot be rewritten in the form ∀n Tx∩Rn 6= ∅ (for
some Rn ⊂ T ), since in this case the set {x : ∀n Tx∩Rn 6= ∅} = {x : ∀n∃s ∈
Rn s ∈ Tx} = ∩n ∪s∈Rn Fs must be an Fσδ-set (given a regular scheme of
closed sets), while the set {x : Tx ∈ IF(T )} = A, being just analytic, need not
be Fσδ. But if each Tx is finitely splitting then König’s lemma applies and so,
A is Borel measurable (given a regular scheme of closed sets). In particular,
this is the case if each Tx does not split at all, that is, is a branch! (Thus, we
need only the trivial case of König’s lemma.) In terms of the scheme (Bs)s∈T
it means that

(6d2) Bt1 ∩Bt2 = ∅ whenever s t1, s t2, t1 6= t2 .

We conclude.

6d3 Lemma. Let (Bs)s∈T be a regular scheme of Borel sets satisfying (6d2).
Then the following set is Borel measurable:

B = {x : Tx ∈ IF(T )} =
⋃

(sn)n∈[T ]

⋂
n

Bsn .

Indeed,

B =
⋂
n

⋃
s∈Rn

Bs ,

where Rn is the n-th level of T (that is, sn in 0T = s0  s1  · · · sn runs
over Rn).

6d4 Core exercise. For every regular scheme (As)s∈T of Borel sets satisfying
(6c6) there exists a regular scheme (Bs)s∈T of Borel sets Bs ⊂ As, satisfying
(6c6) and (6d2).

Prove it.

1Lusin-Souslin; see Srivastava, Th. 4.5.4 or Kechris, Th. (15.1).
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We combine it with 6c8.

6d5 Lemma. On every complete separable metric space there exists a van-
ishing diameter scheme of Borel sets, satisfying (6c6) and (6d2).

Given X, Y, f as in 6d1, we take (Bs)s∈T on X according to 6d5, introduce
As = f(Bs) ⊂ Y and get⋃

(sn)n∈[T ]

⋂
n

Asn =
⋃

(sn)n∈[T ]

⋂
n

f(Bsn) = f

( ⋃
(sn)n∈[T ]

⋂
n

Bsn

)
= f(X) ,

(As)s∈T being a vanishing diameter scheme on Y satisfying (6d2) (think,
why). However, are As Borel sets? For now we only know that they are
analytic.

In spite of the vanishing diameter, it may happen that ∩nAsn 6= ∩nAsn
(since ∩nAsn may be empty); nevertheless,

(6d6)
⋃

(sn)n∈[T ]

⋂
n

Asn =
⋃

(sn)n∈[T ]

⋂
n

Asn = f(X) ,

since (for some x ∈ X) ∩nAsn = ∩nf(Bsn) ⊃ ∩nf(Bsn) = f
(
∩nBsn

)
=

f({x}) = {f(x)} ⊂ f(X). (Then necessarily ∩nAsn = ∩nAs′n for another
branch (s′n)n ∈ [T ].) However, (As)s∈T need not satisfy (6d2).

By (6d6) and 6d3, Theorem 6d1 is reduced to the following.

6d7 Lemma. For every regular scheme (As)s∈T of analytic sets, satisfying
(6d2), there exists a regular scheme (Bs)s∈T of Borel sets, satisfying (6d2)
and such that

As ⊂ Bs ⊂ As for all s ∈ T .

6d8 Core exercise. Let A1, A2, . . . be disjoint analytic sets. Then there
exist disjoint Borel sets B1, B2, . . . such that An ⊂ Bn for all n.

Prove it.

We can get more: An ⊂ Bn ⊂ An for all n (just by replacing Bn with
Bn ∩ An).

Proof of Lemma 6d7. First, we use 6d8 for constructing Bs for s ∈ R1 (the
first level of T ), that is, 0T  s. Then, for every s1 ∈ R1, we do the same
for s such that s1  s (staying within Bs1); thus we get Bs for s ∈ R2. And
so on.

Theorem 6d1 is thus proved.
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6d9 Core exercise. If (X,A) is a standard Borel space, (Y,B) a countably
separated measurable space, and f : X → Y a measurable one-to-one map
then f(X) ∈ B.1

Prove it.

6d10 Corollary. If a subset of a countably separated measurable space is
itself a standard Borel space then it is a measurable subset.2 3

6d11 Corollary. A subset of a standard Borel space is itself a standard
Borel space if and only if it is Borel measurable.

1The topological counterpart is not quite similar: a continuous image of a compact
topological space in a Hausdorff topological space is closed, even if the map is not one-to-
one.

2A topological counterpart: if a subset of a Hausdorff topological space is itself a
compact topological space then it is a closed subset.

3See also the footnotes to 4c12, 4d10 and 5d7.
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Hints to exercises

6a4: recall the proof of 5d11.

6b1: use 6a5 and 6a6.

6b4: use 6b3, 4d7 and 3c6.

6b6: use 6b1 and 1d32.

6b8: similar to 6a4.

6c9: be careful: ϕ need not be uniformly continuous.

6c12: recall the proof of 6c11.

6c13: recall 1b, 1c.

6d4: A1 ∪ A2 ∪ · · · = A1 ] (A2 \ A1) ] . . .
6d8: first, apply Theorem 6a1 to A1 and A2 ∪ A3 ∪ . . .
6d9: similar to 6a4.
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