2 The Lebesgue measure

2a Jordan measure 13
2b Open sets, compact sets; outer measure, inner measure 14
2c Measurable sets of finite measure 17
2d Measurable sets in general 18
2e Measure space 20
2f Rotation invariance 21

Lebesgue measure on \mathbb{R}^{d} is constructed. It turns \mathbb{R}^{d} into a measure space.

2a Jordan measure

Jordan measure on \mathbb{R}^{d} (called also Jordan content) is closely related to the d-dimensional Riemann integral. Both are treated in the course "Analysis 3". I borrow from that course several facts listed below. See also Sect. 1.1.2 "Jordan measure" in the textbook by Tao.

2a1 Fact. A set $E \subset \mathbb{R}^{d}$ is Jordan measurable (in other words, a Jordan set) if and only if its indicator function $\mathbb{1}_{E}$ is Riemann integrable; in this case the Jordan measure of E is the Riemann integral,

$$
m(E)=\int_{\mathbb{R}^{d}} \mathbb{1}_{E}
$$

Clearly, E must be bounded, and $m(E) \in[0, \infty)$.
2a2 Fact. If $\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{d}, b_{d}\right) \subset E \subset\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$, then E is Jordan, and $m(E)=\left(b_{1}-a_{1}\right) \cdots \cdots\left(b_{d}-a_{d}\right)$.

2a3 Fact. If E, F are Jordan, then $E \cup F, E \cap F$ and $E \backslash F$ are Jordan; and if $E \cap F=\emptyset$, then

$$
m(E \cup F)=m(E)+m(F)
$$

Clearly, $m(E \cup F)+m(E \cap F)=m(E)+m(F)$, and $m(E \cup F) \leq m(E)+$ $m(F)$ (subadditivity). Also, $E \subset F$ implies $m(E) \leq m(F)$ (monotonicity).

2a4 Fact (regularity). For every Jordan set E and every $\varepsilon>0$ there exist Jordan sets K, U such that K is compact, U is open, $K \subset E \subset U$, and $m(U \backslash K) \leq \varepsilon .{ }^{1}$

2a5 Fact. Let $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be an invertible linear transformation, and $b \in \mathbb{R}^{d}$. Then for every Jordan set $E \subset \mathbb{R}^{d}$ the set $L E+b=\{L x+b: x \in E\}$ is Jordan, and

$$
m(L E+b)=|\operatorname{det} L| m(E) .
$$

In particular, the Jordan measure is invariant under shifts, rotations and reflections.

The following result is of little interest to Riemann integration, but crutial for Lebesgue integration.

2a6 Proposition. Let $E, E_{1}, E_{2}, \cdots \subset \mathbb{R}^{d}$ be Jordan sets. If $E \subset \cup_{i} E_{i}$, then $m(E) \leq \sum_{i} m\left(E_{i}\right)$.

Proof. It is sufficient to prove that $m(E) \leq 2 \varepsilon+\sum_{i} m\left(E_{i}\right)$ for arbitrary $\varepsilon>0$. Given ε, we take $\varepsilon_{1}, \varepsilon_{2}, \cdots>0$ such that $\varepsilon_{1}+\varepsilon_{2}+\cdots \leq \varepsilon$ (for instance, $\varepsilon_{i}=2^{-i} \varepsilon$), open Jordan $U_{i} \supset E_{i}$ such that $m\left(U_{i}\right) \leq m\left(E_{i}\right)+\varepsilon_{i}$, and a compact Jordan set $K \subset E$ such that $m(K) \geq m(E)-\varepsilon$.

We have $K \subset \cup_{i} U_{i}$; by compactness, there exists i such that $K \subset U_{1} \cup$ $\cdots \cup U_{i}$. Thus, $m(E) \leq \varepsilon+m(K) \leq \varepsilon+m\left(U_{1}\right)+\cdots+m\left(U_{i}\right) \leq 2 \varepsilon+m\left(E_{1}\right)+$ $\cdots+m\left(E_{i}\right)$.

2a7 Corollary. Let $E, E_{1}, E_{2}, \cdots \subset \mathbb{R}^{d}$ be Jordan sets. If $E=\uplus_{i} E_{i},{ }^{2}$ then $m(E)=\sum_{i} m\left(E_{i}\right)$.

2b Open sets, compact sets; outer measure, inner measure ${ }^{3}$

2b1 Definition. Lebesgue measure of an open set $U \subset \mathbb{R}^{d}$ is its inner Jordan measure: ${ }^{4}$

$$
m(U)=\sup \{m(E): \text { Jordan } E \subset U\} \in[0, \infty]
$$

The notation is consistent: if U is Jordan, then this supremum is equal to the Jordan measure of U.

[^0]2b2 Exercise. Let $U \subset \mathbb{R}^{d}$ be an open set, and $E, E_{1}, E_{2}, \cdots \subset \mathbb{R}^{d}$ Jordan sets.
(a) If $U \subset \cup_{i} E_{i}$, then $m(U) \leq \sum_{i} m\left(E_{i}\right)$.
(b) If $U=\uplus_{i} E_{i}$, then $m(U)=\sum_{i} m\left(E_{i}\right)$.

Prove it.
2b3 Exercise. Every open set $U \subset \mathbb{R}^{d}$ is $\uplus_{i} E_{i}$ for some Jordan sets $E_{1}, E_{2}, \cdots \subset$ \mathbb{R}^{d}.

Prove it. ${ }^{1,2}$
2b4 Corollary (subadditivity). $m(U \cup V) \leq m(U)+m(V)$ for all open $U, V \subset \mathbb{R}^{d}$.

2b5 Lemma (monotone convergence for open sets). Let $U, U_{1}, U_{2}, \cdots \subset \mathbb{R}^{d}$ be open sets. If $U_{i} \uparrow U,{ }^{3}$ then $m\left(U_{i}\right) \uparrow m(U) \in[0, \infty]$.

Proof. Clearly, $m\left(U_{1}\right) \leq m\left(U_{2}\right) \leq \cdots \leq m(U)$, therefore $\lim _{i} m\left(U_{i}\right) \leq$ $m(U)$. It is sufficient to prove that $\lim _{i} m\left(U_{i}\right)>a$ for arbitrary $a<m(U)$.

Given $a<m(U)=\sup \{m(E):$ Jordan $E \subset U\}$, we take a Jordan $E \subset U$ such that $m(E)>a$. Using 2a4 we take a compact Jordan $K \subset E$ such that $m(K)>a$. By compactness, there exists i such that $K \subset U_{i}$. Thus, $a<m(K) \leq m\left(U_{i}\right) \leq \lim _{j} m\left(U_{j}\right)$.

Countable subadditivity follows: ${ }^{4}$
$m\left(U_{1} \cup U_{2} \cup \ldots\right) \leq m\left(U_{1}\right)+m\left(U_{2}\right)+\ldots \quad$ for all open sets $U_{1}, U_{2}, \cdots \subset \mathbb{R}^{d}$.
2b6 Definition. Outer measure $m^{*}(A)$ of a set $A \subset \mathbb{R}^{d}$ is

$$
m^{*}(A)=\inf \{m(U): \text { open } U \supset A\} .
$$

Clearly, $m^{*}(U)=m(U)$ for open U.
2b7 Exercise (countable subadditivity).

$$
m^{*}\left(A_{1} \cup A_{2} \cup \ldots\right) \leq m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right)+\ldots \quad \text { for all } A_{1}, A_{2}, \cdots \subset \mathbb{R}^{d}
$$

Prove it. ${ }^{5}$

```
    \({ }^{1}\) Hint: try cubes of the form \(\left[\frac{i_{1}}{2^{n}}, \frac{i_{1}+1}{2^{n}}\right) \times \cdots \times\left[\frac{i_{d}}{2^{n}}, \frac{i_{d}+1}{2^{n}}\right)\).
    \({ }^{2}\) Tao, Lemma 1.2.11.
    \({ }^{3}\) It means, \(U_{1} \subset U_{2} \subset \ldots\) and \(U=\cup_{i} U_{i}\).
    \({ }^{4}\) Since \(U_{1} \cup \cdots \cup U_{i} \uparrow U_{1} \cup U_{2} \cup \ldots\), and \(m\left(U_{1} \cup \cdots \cup U_{i}\right) \leq m\left(U_{1}\right)+\cdots+m\left(U_{i}\right)\).
Alternatively, the argument of 2 b 4 may be generalized.
    \({ }^{5}\) Hint: \(\varepsilon_{1}+\varepsilon_{2}+\cdots \leq \varepsilon\).
```

2b8 Definition. A set $Z \subset \mathbb{R}^{d}$ is a null set if $m^{*}(Z)=0$.
Every subset of a null set is null.
A Jordan set of zero Jordan measure is null (due to 2a4).
Countable union of null sets is a null set (by countable subadditivity).
2b9 Definition. Lebesgue measure of a compact set $K \subset \mathbb{R}^{d}$ is its outer Jordan measure: ${ }^{1}$

$$
m(K)=\inf \{m(E): \text { Jordan } E \supset K\}
$$

The notation is consistent: if K is Jordan, then this infimum is equal to the Jordan measure of K.

Subadditivity for compact sets, $m\left(K_{1} \cup K_{2}\right) \leq m\left(K_{1}\right)+m\left(K_{2}\right)$, follows readily from subadditivity for Jordan sets.

2b10 Exercise. If K is compact, U is open, and $K \subset U$, then
(a) there exists a Jordan set E such that $K \subset E \subset U$;
(b) $m(K) \leq m(U)$;
(c) and moreover, $m(K)<m(U)$.

Prove it. ${ }^{2}$
2b11 Exercise. If K, L are compact and $K \cap L=\emptyset$, then
(a) there exist Jordan sets E, F such that $K \subset E, L \subset F$, and $E \cap F=\emptyset$;
(b) $m(K \uplus L)=m(K)+m(L)$.

Prove it.
2b12 Definition. Inner measure $m_{*}(A)$ of a set $A \subset \mathbb{R}^{d}$ is

$$
m_{*}(A)=\sup \{m(K): \text { compact } K \subset A\} .
$$

Clearly, $m_{*}(K)=m(K)$ for compact K. Also, $m_{*}(A) \leq m^{*}(A)$ due to 2b10(b).

2b13 Exercise (superadditivity).
(a) $m_{*}(A \uplus B) \geq m_{*}(A)+m_{*}(B)$ whenever $A \cap B=\emptyset$;
(b) $m_{*}\left(A_{1} \uplus A_{2} \uplus \ldots\right) \geq m_{*}\left(A_{1}\right)+m_{*}\left(A_{2}\right)+\ldots$ whenever A_{i} are pairwise disjoint.

Prove it.

2b14 Lemma (regularity).

$m_{*}(U)=m(U)$ for open U;
$m^{*}(K)=m(K)$ for compact K.

[^1]Proof. First, $m_{*}(U) \leq m(U)$ by $2 \mathrm{b10}$ (b). Second, given $c<m(U)$, we take Jordan $E \subset U$ such that $m(E)>c$ by 2b1, and compact $K \subset E$ such that $m(K)>c$ by 2a4. Thus, $m_{*}(U)=m(U)$.

For K, the argument is similar: 2 b 10 (b) again, 2 b 9 , and the other part of $2 a 4$.

2c Measurable sets of finite measure

2c1 Definition. A set $A \subset \mathbb{R}^{d}$ is integrable ${ }^{1}$ if $m_{*}(A)=m^{*}(A)<\infty$; in this case its (Lebesgue) measure is

$$
m(A)=m_{*}(A)=m^{*}(A) .
$$

Open sets of finite measure, as well as compact sets, are integrable by 2b14, and the notation is consistent (the same $m(A)$ as before).

2c2 Lemma (additivity). If A, B are integrable and $A \cap B=\emptyset$, then $A \uplus B$ is integrable and $m(A \uplus B)=m(A)+m(B)$.

Proof. By 2b7 and 2b13,

$$
\begin{aligned}
& m^{*}(A \uplus B) \leq m^{*}(A)+m^{*}(B)=m(A)+m(B)= \\
& \quad=m_{*}(A)+m_{*}(B) \leq m_{*}(A \uplus B) \leq m^{*}(A \uplus B),
\end{aligned}
$$

therefore they all are equal.
In particular, $m(U)=m(K)+m(U \backslash K)$ whenever U is open, K is compact, and $K \subset U$.

2c3 Exercise (sandwich). A set $A \subset \mathbb{R}^{d}$ is integrable if and only if for every $\varepsilon>0$ there exist open U and compact K such that $K \subset A \subset U$ and $m(U \backslash K) \leq \varepsilon$.

Prove it.
2c4 Lemma. If A, B are integrable, then $A \cup B, A \cap B$ and $A \backslash B$ are integrable.

Proof. Given $\varepsilon>0$, we take compact K, L and open U, V such that $K \subset$ $A \subset U, L \subset B \subset V, m(U \backslash K) \leq \varepsilon$ and $m(V \backslash L) \leq \varepsilon$. We get a sandwich for $A \backslash B$ as follows:

$$
\underbrace{K \backslash V}_{\text {compact }} \subset A \backslash B \subset \underbrace{U \backslash L}_{\text {open }} .
$$

[^2]We note that $(U \backslash L) \backslash(K \backslash V) \subset(U \backslash K) \cup(V \backslash L)$, therefore $m((U \backslash L) \backslash$ $(K \backslash V)) \leq 2 \varepsilon$ by 2 b 4 , which proves integrability of $A \backslash B$.

Integrability of $A \cap B=A \backslash(A \backslash B)$ and $A \cup B=(A \backslash B) \uplus B$ follows by 2 c 2.

2c5 Exercise. Prove integrability of $A \cap B$ and of $A \cup B$ using sandwich and not using integrability of $A \backslash B$.

2c6 Proposition. Let sets $A_{1}, A_{2}, \cdots \subset \mathbb{R}^{d}$ be integrable, and $A=A_{1} \cup A_{2} \cup \ldots$ satisfy $m^{*}(A)<\infty$. Then A is integrable, and $m(A) \leq m\left(A_{1}\right)+m\left(A_{2}\right)+\ldots$ If in addition A_{i} are (pairwise) disjoint, then $m(A)=m\left(A_{1}\right)+m\left(A_{2}\right)+\ldots$

Proof. We start with the disjoint case: $A=\uplus_{i} A_{i}$. By 2b7 and 2b13(b),

$$
m^{*}(A) \leq \sum_{i} m^{*}\left(A_{i}\right)=\sum_{i} m\left(A_{i}\right)=\sum_{i} m_{*}\left(A_{i}\right) \leq m_{*}(A) \leq m^{*}(A),
$$

therefore they all are equal, which shows that A is integrable and $m(A)=$ $\sum_{i} m\left(A_{i}\right)$.

In the general case we introduce disjoint sets B_{i} with the same union as follows:

$$
B_{1}=A_{1}, \quad B_{2}=A_{2} \backslash A_{1}, \quad B_{3}=A_{3} \backslash\left(A_{1} \cup A_{2}\right), \ldots
$$

then $\uplus_{i} B_{i}=A$. By 2c4, B_{i} are integrable. Thus, A is integrable, and $m(A)=\sum_{i} m\left(B_{i}\right) \leq \sum_{i} m\left(A_{i}\right)$.

2d Measurable sets in general

2d1 Definition. A set $A \subset \mathbb{R}^{d}$ is measurable if for every integrable set C, the set $A \cap C$ is integrable; in this case the measure of A is

$$
m(A)=\sup \{m(A \cap C): \text { integrable } C\} .
$$

If A is integrable, then it is measurable (by 2c4), and the notation is consistent: this supremum is equal to $m(A)$ defined earlier.

2 d 2 Lemma. If A is measurable and $m^{*}(A)<\infty$, then A is integrable.
Proof. We take integrable C_{1}, C_{2}, \ldots (for instance, cubes) such that $\cup_{i} C_{i}=$ \mathbb{R}^{d} and apply 2c6 to $A=\left(A \cap C_{1}\right) \cup\left(A \cap C_{2}\right) \cup \ldots$

2d3 Proposition (measurable sets are an algebra of sets). If $A, B \subset \mathbb{R}^{d}$ are measurable, then $A \cup B, A \cap B$ and $\mathbb{R}^{d} \backslash A$ are measurable.

Proof. For integrable C the set $\left(\mathbb{R}^{d} \backslash A\right) \cap C=C \backslash(A \cap C)$ is integrable (by 2c4); thus, $\mathbb{R}^{d} \backslash A$ is measurable.

Similarly, $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$ is integrable, therefore $A \cup B$ is measurable.

For $A \cap B$ use the same argument, or take the complement.
$\mathbf{2 d} 4$ Proposition (measurable sets are a σ-algebra). If $A_{1}, A_{2}, \cdots \subset \mathbb{R}^{d}$ are measurable, then $A_{1} \cup A_{2} \cup \ldots$ and $A_{1} \cap A_{2} \cap \ldots$ are measurable.

Proof. For integrable C the set $\left(\cup_{i} A_{i}\right) \cap C=\cup_{i}\left(A_{i} \cap C\right)$ is integrable by 2c6, thus $\cup_{i} A_{i}$ is measurable.

For the intersection use the same argument, or take the complement.
2d5 Proposition (countable additivity). If $A_{1}, A_{2}, \cdots \subset \mathbb{R}^{d}$ are measurable and (pairwise) disjoint, then

$$
m\left(A_{1} \uplus A_{2} \uplus \ldots\right)=m\left(A_{1}\right)+m\left(A_{2}\right)+\cdots \in[0, \infty] .
$$

Proof. Denote $A=\uplus_{i} A_{i}$. For integrable C, by 2c6, $m(A \cap C)=\sum_{i} m\left(A_{i} \cap\right.$ $C)$. We have $\sup _{C} m(A \cap C)=m(A)$ and $\sup _{C} m\left(A_{i} \cap C\right)=m\left(A_{i}\right)$; it is sufficient to prove that $\sup _{C} \sum_{i} m\left(A_{i} \cap C\right) \geq \sum_{i} m\left(A_{i}\right)$ (indeed, " \leq " is trivial).

We assume that $m\left(A_{i}\right)<\infty$ for all i (otherwise the claim is trivial). Given n and $\varepsilon>0$, we take integrable C_{1}, \ldots, C_{n} such that $m\left(A_{i} \cap C_{i}\right) \geq$ $m\left(A_{i}\right)-\frac{\varepsilon}{n}$ for $i=1, \ldots, n$, then $\sum_{i=1}^{n} m\left(A_{i} \cap C\right) \geq \sum_{i=1}^{n} m\left(A_{i}\right)-\varepsilon$ where $C=C_{1} \cup \cdots \cup C_{n}$. Thus, $\sup _{C} \sum_{i=1}^{n} m\left(A_{i} \cap C\right) \geq \sum_{i=1}^{n} m\left(A_{i}\right)$ for all n.

Additivity is a special case: $m(A \uplus B)=m(A)+m(B) \in[0, \infty]$.
2d6 Proposition. All open sets and all closed sets are measurable.
Proof. We take integrable compact sets C_{1}, C_{2}, \ldots (for instance, cubes) such that $\cup_{i} C_{i}=\mathbb{R}^{d}$. For a closed F, compact sets $F \cap C_{i}$ are integrable, therefore measurable, hence $F=\cup_{i}\left(F \cap C_{i}\right)$ is measurable.

For open set, take the complement.
2d7 Remark (regularity). For every measurable A,

$$
\sup _{\text {compact } K \subset A} m(K)=m(A)=\inf _{\text {open } U \supset A} m(U) \text {. }
$$

Proof. The left equality: $m(A)=\sup \{m(C)$: integrable $C \subset A\}$ by 2d1, where $m(C)=m_{*}(C)=\sup \{m(K):$ compact $K \subset C\}$ by 2c1 and 2b12.

The right equality is trivial when $m(A)=\infty$; otherwise A is integrable by 2d2, and $m(A)=m^{*}(A)=\inf \{m(U):$ open $U \supset A\}$ by 2c1 and 2b6.

2d8 Exercise. Let us define a zigzag sandwich ${ }^{1}$ (of Jordan sets) as consisting of Jordan sets $E_{k, l}, F_{k, l}$ and (generally not Jordan) sets E_{k}, F_{k}, E, F such that $E_{k, l} \downarrow E_{k}($ as $l \rightarrow \infty)$ and $F_{k, l} \uparrow F_{k}$ for every k, and $E_{k} \uparrow E, F_{k} \downarrow F$. Prove that ${ }^{2}$
(a) A set $A \subset \mathbb{R}^{d}$ is integrable if and only if there exists a zigzag sandwich such that $E \subset A \subset F$ and

$$
\lim _{k} \lim _{l} m\left(E_{k, l}\right)=\lim _{k} \lim _{l} m\left(F_{k, l}\right)<\infty ;
$$

and in this case

$$
m(A)=\lim _{k} \lim _{l} m\left(E_{k, l}\right)=\lim _{k} \lim _{l} m\left(F_{k, l}\right) .
$$

(b) A set $A \subset \mathbb{R}^{d}$ is measurable if and only if there exists a zigzag sandwich such that $E \subset A \subset F$ and $F \backslash E$ is a null set; and in this case ${ }^{3}$

$$
m(A)=m(E)=m(F) \in[0, \infty] .
$$

2e Measure space

2e1 Definition. Let X be a set, and S some set of subsets of X (that is, $S \subset 2^{X}$).
(a) S is an algebra of sets, ${ }^{4}$ if ${ }^{5}$

$$
\emptyset, X \in S ; \quad \forall A, B \in S \quad A \cup B, A \cap B, X \backslash A \in S ;
$$

(b) S is a σ-algebra (in other words, σ-field), if S is an algebra of sets, and

$$
\forall A_{1}, A_{2}, \cdots \in S\left(\cup_{i} A_{i}\right),\left(\cap_{i} A_{i}\right) \in S ;
$$

(c) if S is a σ-algebra on X, then the pair (X, S) is called a measurable space.

2e2 Definition. (a) A measure ${ }^{6}$ on a measurable space (X, S) is a function $\mu: S \rightarrow[0, \infty]$ such that $\mu(\emptyset)=0$, and

$$
\begin{equation*}
\mu(A \uplus B)=\mu(A)+\mu(B) \tag{additivity}
\end{equation*}
$$

[^3]whenever $A, B \in S$ are disjoint; and
$$
\mu\left(\uplus_{i} A_{i}\right)=\sum_{i} \mu\left(A_{i}\right) \quad \text { (countable additivity) }
$$
whenever $A_{1}, A_{2}, \cdots \in S$ are (pairwise) disjoint;
(b) if μ is a measure on (X, S), then the triple (X, S, μ) is called a measure space.

2e3 Example. All Jordan sets in \mathbb{R}^{d} together with their complements are an algebra of sets, but not a σ-algebra.

2e4 Example. All (Lebesgue) measurable sets in \mathbb{R}^{d} are a σ-algebra; it turns \mathbb{R}^{d} into a measurable space. The Lebesgue measure is a measure on this measurable space, and turns it into a measure space.

$2 f$ Rotation invariance

2f1 Proposition. Let $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be an invertible linear transformation, and $b \in \mathbb{R}^{d}$. Then for every $A \subset \mathbb{R}^{d}, A$ is measurable if and only if the set $L A+b=\{L x+b: x \in A\}$ is measurable, and in this case

$$
m(L A+b)=|\operatorname{det} L| m(A) .
$$

Proof. We denote $L x+b$ by $T x$.
First, let A be integrable. We take a zigzag sandwich for A according to $2 \mathrm{~d} 8(\mathrm{a})$. By 2 a 5 , sets $T\left(E_{k, l}\right), T\left(F_{k, l}\right)$ are Jordan, and $m\left(T\left(E_{k, l}\right)\right)=$ $|\operatorname{det} L| m\left(E_{k, l}\right), m\left(T\left(F_{k, l}\right)\right)=|\operatorname{det} L| m\left(F_{k, l}\right)$. We have $T\left(E_{k, l}\right) \downarrow T\left(E_{k}\right)$ and $T\left(F_{k, l}\right) \uparrow T\left(F_{k}\right)$ (since T is a bijection); also, $T\left(E_{k}\right) \uparrow T(E), T\left(F_{k}\right) \downarrow T(F)$, and $T(E) \subset T(A) \subset T(F)$. We get a zigzag sandwich for $T(A)$; thus, $T(A)$ is integrable, and $m(T(A))=|\operatorname{det} L| m(A)$. The same holds for $T^{-1}: y \mapsto$ $L^{-1} y-L^{-1} b$, thus, A is integrable if and only if $T(A)$ is integrable.

Now, let A be measurable. It means that $A \cap C$ is integrable for all integrable C. Thus, $T(A) \cap T(C)=T(A \cap C)$ is integrable for all C such that $T(C)$ is integrable. It means that $T(A)$ is measurable. The same applies to T^{-1}. Finally, $m(A)=\sup \{m(A \cap C)$: integrable $C\}=$ $(1 /|\operatorname{det} L|) \sup \{m(T(A) \cap T(C))$: integrable $T(C)\}=(1 /|\operatorname{det} L|) m(T(A))$.

2f2 Corollary. ${ }^{1}$ (a) The Lebesgue measure is well-defined in every d-dimensional Euclidean space.

[^4]Indeed, every orthonormal basis in such space \mathcal{E} leads to a linear isometry $L: \mathcal{E} \rightarrow \mathbb{R}^{d}$; we take $m(A)=m(L(A))$; by 2f1, the result does not depend on the basis.
(b) The Lebesgue σ-algebra is well-defined in every d-dimensional vector space, and the Lebesgue measure (on such space) is defined up to a coefficient.

2f3 Remark.

Prop. 2f1 generalizes readily to nonlinear bijections $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$; if T preserves the Jordan measure, then T preserves the Lebesgue measure. Recall examples of nonlinear measure preserving transformations from Sect. 1b.

Index

σ-algebra, 19, 20
additivity, 13, 17, 18
algebra of sets, 18, 20
countable additivity, 19
countable subadditivity, 15
inner Jordan measure, 14
inner measure, 16
integrable set, 17
Jordan (measurable) set, 13
Jordan measure, 13
Lebesgue measure of compact set, 16 measurable set, 18
open set, 14
measurable set, 18
measurable space, 20
measure (on a space), 20
monotone convergence for open sets, 15
null set, 16
outer measure, 15
regularity, 14, 16, 19
sandwich, 17
subadditivity, 13, 15, 16, 18
superadditivity, 16
zigzag sandwich, 20

[^0]: ${ }^{1}$ A stronger formulation $K \subset E^{\circ} \subset E \subset \bar{E} \subset U$ holds, but we do not need it.
 ${ }^{2}$ It means, $E_{i} \cap E_{j}=\emptyset$ for $i \neq j$, and $E=\cup_{i} E_{i}$.
 ${ }^{3}$ Our 2b 2 d follow stages $3-6$ of Sect. 2A in the textbook by Jones. About Carathéodory, see Remark on p. 55 there: "But I believe the slow and deliberate development we have given is preferable for the beginner."
 ${ }^{4}$ Recall Sect. 1d: for an open set, its inner Jordan measure is relevant.

[^1]: ${ }^{1}$ Recall Sect. 1d: for a compact set, its outer Jordan measure is relevant.
 ${ }^{2}$ Hint: $\operatorname{dist}\left(K, \mathbb{R}^{d} \backslash U\right)>0$; try a finite union of small cubes.

[^2]: ${ }^{1}$ Not a standard terminology. Just a shortcut for "measurable set of finite measure". Equivalent to integrability of $\mathbb{1}_{A}$.

[^3]: ${ }^{1}$ This is the zigzag sandwich in the sense of Sect. 1e, but for sets rather than functions.
 ${ }^{2}$ Hint: 2d7 2b9 2b1
 ${ }^{3}$ Do you think that in this case $m(A)=\lim _{k} \lim _{l} m\left(E_{k, l}\right)=\lim _{k} \lim _{l} m\left(F_{k, l}\right)$?
 ${ }^{4}$ Called also a concrete Boolean algebra.
 ${ }^{5}$ Surely you can shorten this (and following) definition(s)...
 ${ }^{6}$ Ridiculously, "probability measures", "nonatomic measures", "finite measures" etc. are (special cases of) measures, but "signed measures", "complex measures", "vector measures", "finitely additive measures" etc. are not; rather, they are generalized measures.

[^4]: ${ }^{1}$ The same applies to affine spaces.

