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4a Introduction

Given a measure space (X,S, µ) and a measurable function f : X → [0,∞],
we are interested in a measure ν on (X,S) such that

(4a1) µ(A) inf
x∈A

f(x) ≤ ν(A) ≤ µ(A) sup
x∈A

f(x) for all A ∈ S ,

in order to define the integral by∫
A

f dµ = ν(A) .

In symbols, the relation between µ, f and ν is often written as

dν

dµ
= f ,

less often as dν = f dµ, and sometimes1 as ν = f · µ; the latter notation is
used below.

We start with “simple functions”, then proceed to measurable functions
X → [0,∞] (“unsigned”), and then to measurable functions X → [−∞,∞]
(“signed”).

Throughout, (X,S, µ) is a measure space.

1See for example Def. 6 in Appendix A5 to lecture notes by Klaus Ritter; there, find
“Probability theory (WS 2011/12)”.

http://www.mathematik.uni-kl.de/compstoch/members/klaus-ritter/lecture-notes/
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4b Simple functions (unsigned)

4b1 Remark. (a) If µ is a measure and c ∈ [0,∞), then cµ is a measure.
(By convention, 0 · ∞ = 0.)

(b) If µ1, µ2 are measures, then µ1 + µ2 is a measure. (All measures are
on the same (X,S), of course.)

(c) If µ is a measure and B ∈ S, then A 7→ µ(A ∩B) is a measure.

By a simple function1 we mean a measurable function f : X → R such
that f(X) ⊂ R is a finite set. For now we assume also f(X) ⊂ [0,∞) and
call f an unsigned simple function.

4b2 Lemma. For every unsigned simple function f there exists one and only
one measure ν satisfying (4a1); and this ν is given by

ν(A) =
∑

y∈f(X)

y µ
(
A ∩ f−1(y)

)
for A ∈ S .

Proof. Uniqueness: it follows from (4a1) that ν(A) = yµ(A) whenever A ⊂
f−1(y); and in general, ν(A) = ν

(
]y(A ∩ f−1(y))

)
=
∑

y ν
(
A ∩ f−1(y)

)
=∑

y yµ
(
A ∩ f−1(y)

)
.

Existence: the latter formula gives a measure (by 4b1) and, denoting
b = supx∈A f(x) we have A = ]y≤b

(
A ∩ f−1(y)

)
and therefore ν(A) ≤

b
∑

y≤b µ
(
A ∩ f−1(y)

)
= bµ(A); the infimum is treated similarly.

We denote this measure ν by f · µ;

(f · µ)(A) =
∑

y∈f(X)

y µ
(
A ∩ f−1(y)

)
.

In particular,

(1lB · µ)(A) = µ(A ∩B) ;(4b3)

(1lA · µ)(X) = µ(A) .(4b4)

4b5 Exercise.

(f · µ)(A) =

∫ ∞
0

µ
(
A ∩ f−1(y,∞)

)
dy .

(Just the Riemann integral of a step function with bounded support.)
Prove it.

1But note that “simple” functions are much more complicated than step functions.
Indeed, the indicator of a measurable set is a simple function, even if the set is quite
complicated.
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Clearly, (cf) · µ = c(f · µ) for c ∈ [0,∞). Also, if f is constant, f(·) = c,
then f · µ = cµ.

4b6 Lemma. (f + g) ·µ = f ·µ+ g ·µ for all unsigned simple functions f, g.

Proof. If A is such that f and g are constant on A, then
(
(f + g) · µ

)
(A) =

(f · µ)(A) + (g · µ)(A) (think, why). And in general, this equality still holds,
since A is the disjoint union of such sets:

A =
⊎

y∈f(X),z∈g(X)

(
A ∩ f−1(y) ∩ g−1(z)

)
.

One says that the map f 7→ f · µ is positively linear.

4b7 Exercise. (fg) · µ = g · (f · µ) for all unsigned simple functions f, g.
Prove it.1

In particular,

(4b8) (g · µ)(A) =
(
(g1lA) · µ

)
(X) ,

since both sides are equal to
(
1lA · (g · µ)

)
(X).

4c Measurable functions (unsigned)

4c1 Definition. The (Lebesgue) integral of a measurable function f : X →
[0,∞] over a set A ∈ S is∫

A

f dµ = sup{(g · µ)(A) : unsigned simple g ≤ f} .

Immediate consequences (check them):

if f is simple, then

∫
A

f dµ = (f · µ)(A) ; (simple)(4c2)

if f = g on A, then

∫
A

f dµ =

∫
A

g dµ ; (locality)(4c3)

if f ≤ g on A, then

∫
A

f dµ ≤
∫
A

g dµ ; (monotonicity)(4c4)

if f = c on A, then

∫
A

f dµ = cµ(A) ; (constant)(4c5)

1Hint: similar to 4b6.
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(4c6) if a ≤ f ≤ b on A, then aµ(A) ≤
∫
A

f dµ ≤ bµ(A) . (mean value)

In probability theory, the (mathematical) expectation of a random vari-
able X : Ω→ [0,∞] on a probability space (Ω,F , P ) is, by definition,

EX =

∫
Ω

X dP .

We’ll see soon that the map A 7→
∫
A
f dµ is a measure, and then we’ll

denote this measure by f · µ. First, additivity.

4c7 Lemma. ∫
A]B

f dµ =

∫
A

f dµ+

∫
B

f dµ

whenever A,B ∈ S are disjoint.

Proof.
∫
A]B f dµ = supg(g · µ)(A ] B) = supg

(
(g · µ)(A) + (g · µ)(B)

)
≤

supg(g · µ)(A) + supg(g · µ)(B) =
∫
A
f dµ +

∫
B
f dµ; we have to prove that∫

A]B f dµ ≥
∫
A
f dµ+

∫
B
f dµ, that is,

∫
A]B f dµ ≥ (g1 · µ)(A) + (g2 · µ)(B)

for all simple g1, g2 ≤ f . We take g = max(g1, g2) (the pointwise maximum);
this is also a simple function, and g ≤ f . Thus,

∫
A]B f dµ ≥ (g ·µ)(A]B) =

(g · µ)(A) + (g · µ)(B) ≥ (g1 · µ)(A) + (g2 · µ)(B).

Second, countable additivity.

4c8 Remark. In Definition 2e2 of a measure, the countable additivity may
be replaced with the condition

Ak ↑ A implies µ(Ak) ↑ µ(A) .

(Think, why is it equivalent.)

4c9 Lemma.

Ak ↑ A implies

∫
Ak

f dµ
x ∫

A

f dµ

for A,A1, A2, · · · ∈ S.

Proof.
∫
A
f dµ = supg(g · µ)(A) = supg supk(g · µ)(Ak) = supk supg(g ·

µ)(Ak) = supk

∫
Ak
f dµ.

Now we introduce the measure f · µ by

(f · µ)(A) =

∫
A

f dµ for A ∈ S .

The notation is consistent due to (4c2).
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4c10 Exercise. (a) If µ is finite and f is bounded,1 then f · µ is finite;
(b) if µ is σ-finite and f is finite (everywhere), then f · µ is σ-finite.

Prove it.2

4c11 Theorem (Monotone Convergence Theorem). Let functions f, f1, f2, · · · :
X → [0,∞] be measurable, and a set A ∈ S. Then

fk ↑ f on A implies

∫
A

fk dµ
x ∫

A

f dµ .

4c12 Lemma. Let measurable f1, f2, · · · : X → [0,∞] and c ∈ [0,∞] satisfy
f1 ≤ f2 ≤ . . . and ∀x ∈ A limk fk(x) ≥ c. Then limk

∫
A
fk dµ ≥ cµ(A).

Proof. It is sufficient to prove that limk

∫
A
fk dµ ≥ bp whenever 0 ≤ b < c

and 0 ≤ p < µ(A). Given such b and p, we introduce sets Ak = {x ∈ A :
fk(x) ≥ b}, note that Ak ↑ A (think, why) and therefore µ(Ak) ↑ µ(A). For
k large enough we have µ(Ak) ≥ p. The simple function g = b1lAk

satisfies
g ≤ fk, whence

∫
A
fk ≥ (g · µ)(A) = bµ(Ak) ≥ bp.

Proof of Theorem 4c11. Clearly, limk

∫
A
fk dµ exists and cannot exceed

∫
A
f dµ;

we have to prove that limk

∫
A
fk dµ ≥

∫
A
f dµ, that is, limk

∫
A
fk dµ ≥

(g · µ)(A) for arbitrary simple g ≤ f .
We have (g ·µ)(A) =

∑
y∈g(X) yµ(Ay) where Ay = A∩g−1(y); and, by 4c7,∫

A
fk dµ =

∑
y∈g(X)

∫
Ay
fk dµ. For each y, on Ay we have limk fk = f ≥ g = y;

by Lemma 4c12, limk

∫
Ay
fk dµ ≥ yµ(Ay). The sum over y ∈ g(X) completes

the proof.

4c13 Exercise. ∫
A

f dµ =

∫ ∞
0

µ
(
A ∩ f−1(y,∞]

)
dy .

Prove it.3

(The right-hand side is the Lebesgue integral on (0,∞) of the function
y 7→ µ

(
A ∩ f−1(y,∞]

)
.)

In particular, let A = X, and (X,S) be
(
[0,∞],B[0,∞]

)
(µ being an

arbitrary measure on this measurable space), and f = id : [0,∞] → [0,∞].
Then
(4c14)∫

[0,∞]

id dµ =

∫ ∞
0

µ
(
(y,∞]

)
dy for all Borel measures µ on [0,∞].

1Not by +∞, of course.
2Hint: (a) easy; (b) use (a).
3Hint: 4b5; fk ↑ f ; f−1k (y,∞] ↑ f−1(y,∞]; use 4c11 (twice).
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Think twice before writing this
∫

[0,∞]
as
∫∞

0
; the points 0 and ∞ may be

atoms of the measure µ.
In probability theory, for a random variableX : Ω→ [0,∞], P

(
X−1(x,∞]

)
is the probability of the event X > x, denoted P

(
X > x

)
, and we get

EX =

∫ ∞
0

P
(
X > x

)
dx .

Positive linearity of the map f 7→ f · µ proved in Sect. 4b for simple f
will be generalized soon to measurable f . In other words: positive linearity
of
∫
A

(for every given A ∈ S).
For every measurable f there exist simple fk such that fk ↑ f . Just choose

finite sets E1 ⊂ E2 ⊂ · · · ⊂ [0,∞) whose union is dense in [0,∞), and take
fk(x) = max{y ∈ Ek : y ≤ f(x)}.

4c15 Proposition.
∫
A

(f + g) dµ =
∫
A
f dµ +

∫
A
g dµ for all measurable

f, g : X → [0,∞].

Proof. We take simple fk, gk such that fk ↑ f , gk ↑ g; then fk+gk ↑ f+g. By
4c11,

∫
A
fk dµ ↑

∫
A
f dµ,

∫
A
gk dµ ↑

∫
A
g dµ, and

∫
A

(fk+gk) dµ ↑
∫
A

(f+g) dµ.
Thus,

∫
A

(f + g) dµ = limk

∫
A

(fk + gk) dµ = limk

(∫
A
fk dµ +

∫
A
gk dµ

)
=

limk

∫
A
fk dµ+ limk

∫
A
gk dµ =

∫
A
f dµ+

∫
A
g dµ.

Also,
∫
A

(cf) dµ = c
∫
A
f dµ for c ≥ 0 (think, why); thus,

∫
A

is positively
linear.

4c16 Corollary (of 4c15 and 4c11).
∫
A

(∑∞
k=1 fk

)
dµ =

∑∞
k=1

∫
A
fk dµ.

4c17 Exercise. 1,2 Let f = 0 on the Cantor set, and f = k on each interval
of length 3−k which has been removed from [0, 1]. Find

∫
[0,1]

f dm.

In terms of monotone convergence of measures,

(4c18) µk ↑ µ ⇐⇒ ∀A ∈ S µk(A) ↑ µ(A) ,

the Monotone Convergence Theorem 4c11 becomes

(4c19) fk ↑ f =⇒ fk · µ ↑ f · µ ;

and 4c16 becomes

(4c20) (f1 + f2 + . . . ) · µ = f1 · µ+ f2 · µ+ . . .

1Capiński & Kopp, Exer. 4.2.
2Hint:

∑∞
k=1 kx

k−1 = d
dx

∑∞
k=0 x

k = 1/(1− x)2 for −1 < x < 1.
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4c21 Exercise. Let (Y, T ) be a measurable space, ϕ : X → Y a measurable
map, and f : Y → [0,∞] a measurable function. Then

f · ϕ∗µ = ϕ∗
(
(f ◦ ϕ) · µ

)
.

Prove it.1

We get a “change of variable formula”:2∫
B

f d(ϕ∗µ) =

∫
ϕ−1(B)

(f ◦ ϕ) dµ for B ∈ T ;(4c22) ∫
Y

f d(ϕ∗µ) =

∫
X

(f ◦ ϕ) dµ .(4c23)

In particular, let (Y, T ) be
(
[0,∞],B[0,∞]

)
, and f = id : [0,∞]→ [0,∞];

we also rename ϕ to f and get∫
X

f dµ =

∫
[0,∞]

id d(f∗µ) ;

this fact follows also from 4c13 and (4c14).
In probability theory, for a random variable X : Ω → [0,∞], X∗P is the

distribution of X, denoted PX (as was noted before 3d3), and we get

EX =

∫
[0,∞]

id dPX

and, more generally, E f(X) =
∫
f dPX for Borel f : [0,∞]→ [0,∞].

Another special case of 4c21: Y = X, T ⊂ S, ϕ = id. In this case
ϕ∗µ = µ|T ; (4c22) becomes∫

B

f d(µ|T ) =

∫
B

f dµ

for B ∈ T and T -measurable f . Extending a measure from T to S we do
not change integrals that were defined before. In particular, completion of a
measure does not change integrals that were defined before the completion.

Extension of the set X may be treated similarly.

4c24 Remark. Every increasing sequence of measures converges to some
measure.

Proof (sketch). Let µi ↑ µ; clearly, µ is additive; countable additivity
(similar to 4c9): let Aj ↑ A, then µ(A) = supi µi(A) = supi supj µi(Aj) =
supj supi µi(Aj) = supj µ(Aj).

1Hint: first, f is an indicator; second, f is simple; third, the general case.
2Tao, Exer. 1.4.37; Capiński & Kopp Th. 4.41.
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4c25 Exercise. µk ↑ µ implies f · µk ↑ f · µ for unsigned simple f .
Prove it.1

4c26 Exercise. (fg) · µ = g · (f · µ) for all unsigned measurable f, g.
Prove it.2

In particular, if f : X → (0,∞), then 1
f
· (f · µ) =

(
1
f
f
)
· µ = 1 · µ = µ;

that is,

ν = f · µ =⇒ µ =
1

f
· ν for 0 < f <∞ .

In more traditional notation

(4c27) f =
dν

dµ
for ν = f · µ

the fact 4c26 becomes

(4c28)

∫
A

g dν =

∫
A

(
g

dν

dµ

)
dµ .

4c29 Example. The standard normal distribution on R (called also the
standard Gaussian measure on R) is the probability measure γ = ϕ · m
where

ϕ(x) =
1√
2π

e−x
2/2 is the standard normal density .

If a random variable X is distributed γ (that is, PX = γ), then

E f(X) =

∫
Ω

f(X) dP =

∫
R
f dγ =

∫
R
fϕ dm =

∫ +∞

−∞
f(t)ϕ(t) dt

for every Borel f : R→ [0,∞].

4c30 Exercise. (a) cµ{x ∈ A : f(x) ≥ c} ≤
∫
A
f dµ for all c ∈ [0,∞];3

(b) if
∫
A
f dµ <∞, then {x ∈ A : f(x) =∞} is a null set;

(c) if
∫
A
f dµ = 0, then {x ∈ A : f(x) > 0} is a null set.

Prove it.4

One says that f <∞ almost everywhere on A, if {x ∈ A : f(x) =∞} is a
sub-null set. (For measurable f it is then a null set.) More generally, given a
property of a point of A, one says that this property holds almost everywhere

1Hint: f is a linear combination of indicators; use (4b3).
2Hint: first, do it for simple g using (4b7), fk ↑ f and 4c25; second, gk ↑ g, use (4c19).
3Do not forget: 0 · ∞ = 0 (as noted in 4b1).
4Hint: (a) integrate f over this set; (b), (c) use (a).
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(a.e.) on A, if it holds outside some sub-null set (and then, necessarily,
outside some null set). In probability theory this is called “almost surely”
(a.s.). Thus,

if

∫
A

f dµ <∞, then f is finite a.e. on A ;(4c31)

if

∫
A

f dµ = 0, then f = 0 a.e. on A .(4c32)

If µ(A) < ∞ and f is finite a.e. on A, but unbounded, then
∫
A
f dµ may

converge or diverge. But if f = 0 a.e. on A, then
∫
A
f dµ = 0 (even if

µ(A) = ∞), since this is evidently true for simple functions. In particular,∫
Z
f dµ = 0 for all f , if Z is a null set. (Indeed, even the equality 0 = ∞

holds a.e. on a null set!) It follows by 4c7 that
∫
A
f dµ =

∫
A\Z f dµ; null sets

are negligible.
Two functions are called equivalent, if they are equal almost everywhere.
Denoting by [f ] the equivalence class of f we may write the equivalence as

[f ] = [g]. If [f ] = [g] then
∫
A
f dµ =

∫
A
g dµ for all A (just because null sets

are negligible). That is,
∫
A

[f ] dµ is well-defined. Also, [f ] · µ is well-defined.
If [f1] = [g1] and [f2] = [g2], then [f1 + f2] = [g1 + g2] (think, why);

thus, the sum of two equivalence classes is a well-defined equivalence class.
Moreover, the same holds for the sum of countably many equivalence classes.
Also the relation [f ] ≤ [g] is well-defined.

Functions may be replaced with equivalence classes in all our statements.
For instance, in (4c6):

if a ≤ f ≤ b a.e. on A, then aµ(A) ≤
∫
A

f dµ ≤ bµ(A) ;

in 4c11:

fk ↑ f a.e. on A implies

∫
A

fk dµ
x ∫

A

f dµ ;

and so on. Usually one still writes functions (just for convenience), but means
their equivalence classes.

4d Integrable functions

4d1 Definition. A measurable function f : X → [−∞,+∞] is integrable, if∫
X
|f | dµ <∞.

Clearly, integrable functions are a vector space. The functional f 7→∫
X
|f | dµ is (generally) not a norm on this space of functions, but is a norm
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on the corresponding space of equivalence classes:

‖[f ]‖ =

∫
X

|f | dµ ;

‖[cf ]‖ = |c|‖[f ]‖ ;

‖[f + g]‖ ≤ ‖[f ]‖+ ‖[g]‖ ;

‖[f ]‖ = 0 ⇐⇒ [f ] = [0] .

This normed1 space is denoted by L1(X,S, µ), or just L1(µ). 2

Integrable functions are finite a.e.; WLOG we may assume that they are
finite everywhere.

Every integrable function can be written as the difference of two unsigned
integrable functions; in particular,

f = f+ − f− , where f+ = max(f, 0) and f− = (−f)+ .

4d2 Lemma. If unsigned integrable f1, f2, g1, g2 satisfy f1 − f2 = g1 − g2,
then

∫
X
f1 dµ−

∫
X
f2 dµ =

∫
X
g1 dµ−

∫
X
g2 dµ.

Proof. f1 + g2 = f2 + g1; by 4c15,
∫
f1 +

∫
g2 =

∫
f2 +

∫
g1, that is,

∫
f1 −∫

f2 =
∫
g1 −

∫
g2.

Thus, we may define∫
X

f dµ =

∫
X

g dµ−
∫
X

h dµ whenever f = g − h ;

here f is integrable, and g, h are unsigned integrable. Clearly,

[f ] 7→
∫
X

f dµ is a linear functional on L1(µ) ,∣∣∣∣ ∫
X

f dµ

∣∣∣∣ ≤ ‖[f ]‖ .

The same holds for
∫
A

, of course.
A vector-function f : X → Rn, f(x) =

(
f1(x), . . . , fn(x)

)
, is called inte-

grable, if its coordinate functions f1, . . . , fn are integrable; in this case, by
definition, ∫

A

f dµ =

(∫
A

f1 dµ, . . . ,

∫
A

fn dµ

)
.

1In fact, Banach space; its completeness will be proved later.
2Or L1(µ).
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With respect to integrability, complex-valued functions X → C may be
treated as just X → R2 (and X → Cn as X → R2n).

Applying 4c13 to f+ and f− we get (for integrable f)

(4d3)

∫
A

f dµ =

∫ ∞
0

µ
(
A ∩ f−1(y,∞)

)
−
∫ ∞

0

µ
(
A ∩ f−1(−∞,−y)

)
dy .

Similarly to (4c14),

(4d4)

∫
R

id dµ =

∫ ∞
0

µ
(
(y,∞)

)
dy −

∫ ∞
0

µ
(
(−∞,−y)

)
dy

for all Borel measures µ on R such that
∫
R | · | dµ <∞.

In probability theory, for an integrable random variable X,

EX =

∫ ∞
0

P
(
X > x

)
dx−

∫ ∞
0

P
(
X < −x

)
dx .

Applying (4c22) and (4c23) to f+ and f− we see that they hold for all
integrable f . In particular,∫

X

f dµ =

∫
R

id d(f∗µ) ;

this fact follows also from 4d3 and (4d4). In probability theory,

EX =

∫
R

id dPX for all integrable X ,

E f(X) =

∫
R
f dPX for all PX-integrable f .

For vector-functions f : X → Rn, similarly,∫
X

f dµ =

∫
Rn

id d(f∗µ) ,

µ-integrability of f being equivalent to (f∗µ)-integrability of id. In probabil-
ity theory,

E f(X1, . . . , Xn) =

∫
Rn

f dPX1,...,Xn ,

where PX1,...,Xn = X∗P is the joint distribution (recall the paragraph before
3d3).
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