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6a Iterated integral for R× R and Rm × Rn

Below, “measurable” means “Lebesgue measurable”, m1 is Lebesgue measure
on R, and m2 is Lebesgue measure on R2.

6a1 Theorem (Tonelli). If a function f : R2 → [0,∞] is measurable, then
(a) its section f(x, ·) : y 7→ f(x, y) is a measurable function R → [0,∞]

for almost all x ∈ R;
(b) the integral of the section

x 7→
∫
R
f(x, ·) dm1

is a measurable function R→ [0,∞] (defined almost everywhere);

(c)

∫
R2

f dm2 =

∫
R

(
x 7→

∫
R
f(x, ·) dm1

)
dm1 ∈ [0,∞] .

In more traditional notation,∫ ∫
f(x, y) dxdy =

∫ (∫
f(x, y) dy

)
dx =

∫
dx

∫
dy f(x, y) .

Applying it to (x, y) 7→ f(y, x) we get∫
dx

∫
dy f(x, y) =

∫∫
f(x, y) dxdy =

∫
dy

∫
dx f(x, y) .

6a2 Remark. Given f : R→ [0,∞], we define

g(x, y) =

{
1 if 0 < y < f(x),

0 otherwise,
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then
∫
g(x, ·) dm = f(x) and

∫
g(·, y) dm = m{x : f(x) > y}; assuming (for

now) measurability of g we get

(6a3)

∫
R
f dm = m2{(x, y) : 0 < y < f(x)} =

∫ ∞
0

m{x : f(x) > y} dy ,

that is, both “the distribution formula” 4c13 (Tao, Exer. 1.7.25) and “area
interpretation of the integral” (Tao, Exer. 1.7.24) at once. Note that measur-
ability of g implies measurability of f . The converse also holds (take simple
fn ↑ f and observe that gn ↑ g).

6a4 Remark. The “area interpretation” sheds new light on the Dominated
Convergence Theorem 5d1. First, WLOG, 0 ≤ fn ≤ gn (instead of |fn| ≤ g),
since fn + g → f + g a.e., and 0 ≤ fn + g ≤ 2g. Second, we introduce

hn(x, y) =

{
1 if 0 < y < fn(x),

0 otherwise,
h(x, y) =

{
1 if 0 < y < f(x),

0 otherwise

and note that fn → f a.e. implies hn → h a.e. (think, why). By 5c1, hn → h
locally in measure. We treat hn and h as indicator functions on the measure
space {(x, y) : 0 < y < g(x)} (subspace of (R2,L[R2],m2)). Integrability of g
means finiteness of this new measure! Now, the local convergence in measure
is in fact global, and implies L1-convergence (due to boundedness).

Below, by (a), (b), (c) we mean (a), (b), (c) of Theorem 6a1. We abbrevi-
ate the phrase “f is measurable and satisfies (a), (b), (c)” to “f satisfies (a),
(b), (c)”. We also abbreviate the phrase “the indicator 1lA of a set A ⊂ R2

satisfies (a), (b), (c)” to “set A satisfies (a), (b), (c)”.

6a5 Exercise. Every box [a, b)× [c, d) satisfies (a), (b), (c).
Prove it.

6a6 Lemma. Let f, f1, f2, · · · : R2 → [0,∞] and fk ↑ f . If each fk satisfies
(a), (b), (c), then f satisfies (a), (b), (c).

Proof. Measurability of fk implies measurability of f by 3c10, and
∫
fk dm2 ↑∫

f dm2 by Monotone Convergence Theorem 4c11.
For every x ∈ R we have fk(x, ·) ↑ f(x, ·), thus, (a) for fk implies (a) for

f by 3c10 (again), and
∫
fk(x, ·) dm1 ↑

∫
f(x, ·) dm1 by 4c11 (again).

Now, (b) for fk implies (b) for f by 3c10 (once again), and∫
R

(
x 7→

∫
R
fk(x, ·) dm1

)
dm1

x ∫
R

(
x 7→

∫
R
f(x, ·) dm1

)
dm1

by 4c11 (once again).
Now, (c) for fk implies (c) for f .
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6a7 Corollary. Let A,A1, A2, · · · ⊂ R2 and Ak ↑ A. If each Ak satisfies (a),
(b), (c), then A satisfies (a), (b), (c).

6a8 Exercise. Let f, g : R2 → [0,∞] satisfy (a), (b), (c). Then
(A) f + g satisfies (a), (b), (c);
(B) if, in addition, f ≤ g and g is integrable, then g− f satisfies (a), (b),

(c).
Prove it.

In particular,

(6a9) if A ⊂ B,m(B) <∞, and A,B satisfy (a), (b), (c),

then B \ A satisfies (a), (b), (c).

6a10 Exercise. Every open set U ⊂ R2 satisfies (a), (b), (c).
Prove it.1

6a11 Exercise. Every compact set K ⊂ R2 satisfies (a), (b), (c).
Prove it.2

6a12 Lemma (sandwich). Let A ⊂ B ⊂ C ⊂ R2 and m(A) = m(C) < ∞.
If A and C satisfy (a), (b), (c), then B satisfies (a), (b), (c).

Proof. By (6a9), C \ A satisfies (a), (b), (c). Thus,
∫

dx
∫

dy 1lC\A(x, y) =
m(C \ A) = 0; by 4c32,

∫
dy 1lC\A(x, y) = 0 for almost all x.

For every such x, 1lB(x, ·) is measurable due to sandwich: 1lA(x, ·) ≤
1lB(x, ·) ≤ 1lC(x, ·); thus, B satisfies (a). Also, for such x,

∫
1lA(x, y) dy =∫

1lB(x, y) dy =
∫

1lC(x, y) dy, which implies (b) and (c) for B due to sand-
wich.

6a13 Lemma. Every measurable set A ⊂ R2 satisfies (a), (b), (c).

Proof. WLOG, A is bounded (due to 6a7). We take compact sets Ki such
that Ki ↑ K∞ ⊂ A (but K∞ need not be compact, of course), and bounded
open sets Ui ↓ U∞ ⊃ A (but U∞ need not be open) such that m(K∞) =
m(A) = m(U∞).

The setK∞ satisfies (a), (b), (c) by 6a11 and 6a7. The set U∞ satisfies (a),
(b), (c) by the same argument and (6a9), since compact sets U1\Ui ↑ U1\U∞.

We have K∞ ⊂ A ⊂ U∞ and m(U∞ \ K∞) = 0. It remains to apply
6a12.

1Hint: recall 2b3 (and 6a7, and maybe 4c16).
2Hint: 6a10 and 6a9.
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Proof of Th. 6a1. By 6a13, (a), (b), (c) hold for indicators. By positive
linearity (recall 4c15) they holds for simple functions. In general, we take
simple fk such that fk ↑ f (recall the phrase before 4c15) and apply 6a6.

For measurable f : R2 → [−∞,+∞],

(6a14) f is integrable ⇐⇒
∫

dx

∫
dy |f(x, y)| <∞ .

6a15 Theorem (Fubini). If a function f : R2 → R is integrable, then
(a) its section f(x, ·) : y 7→ f(x, y) is integrable for almost all x ∈ R;
(b) the integral of the section

x 7→
∫
R
f(x, ·) dm1

is an integrable function R→ R (defined almost everywhere);

(c)

∫
R2

f dm2 =

∫
R

(
x 7→

∫
R
f(x, ·) dm1

)
dm1 .

For integrable f , again,∫
dx

∫
dy f(x, y) =

∫∫
f(x, y) dxdy =

∫
dy

∫
dx f(x, y) .

Below, by (a), (b), (c) we mean (a), (b), (c) of Theorem 6a15.

6a16 Exercise. If f and g satisfy (a), (b), (c), then (−f) and f + g satisfy
(a), (b), (c).

Prove it.

Proof of Th. 6a15. We have f = f+ − f−, and f+, f− : R2 → [0,∞) are
integrable. It remains to apply 6a16.

6a17 Remark. Theorems 6a1 and 6a15 generalize readily to Rm×Rn. The
only change in the proof is 6a5: replace [a, b) × [c, d) with B1 × B2 (the
product of two boxes). Other changes are trivial replacements of R with Rm,
Rn as needed, and R2 with Rm+n.
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6b Product measure

6b1 Definition. The product (X1, S1)× (X2, S2) of two measurable spaces
(X1, S1) and (X2, S2) is the measurable space (X,S) where X = X1 × X2

and S is the σ-algebra on X generated by {A1 ×A2 : A1 ∈ S1, A2 ∈ S2} (or,
equivalently, by {A1 ×X2 : A1 ∈ S1} ∪ {X1 × A2 : A2 ∈ S2}).

6b2 Exercise. (Rm,B[Rm])× (Rn,B[Rn]) = (Rm+n,B[Rm+n]).
Prove it.

6b3 Exercise. If (X,S) = (X1, S1) × (X2, S2), then for every A ∈ S and
every x ∈ X1 the section Ax = {y ∈ X2 : (x, y) ∈ A} belongs to S2.

Prove it.1

6b4 Exercise. (Rm,L[Rm])× (Rn,L[Rn]) 6= (Rm+n,L[Rm+n]).
Prove it.2,3

6b5 Remark. Measurability4 of all sections Ax = {y ∈ X2 : (x, y) ∈ A} and
Ay = {x ∈ X1 : (x, y) ∈ A} is necessary but not sufficient for measurability
of A. A counterexample: sets Af = {

(
x, (x, f(x))

)
: x ∈ R} ⊂ R × R2 for

arbitrary functions f : R → R have Borel sections (of at most one point);
but only a minority (a continuum) of them are Borel sets.

6b6 Theorem. Let (X1, S1, µ1) and (X2, S2, µ2) be two σ-finite measure
spaces, and (X,S) = (X1, S1)× (X2, S2) the product of the underlying mea-
surable spaces. Then there exists one and only one measure µ on (X,S) such
that

µ(A1 × A2) = µ1(A1)µ2(A2) for all A1 ∈ S1, A2 ∈ S2 ,

and this measure satisfies∫
X1

(
x 7→ µ2(Ax)

)
dµ1 = µ(A) =

∫
X2

(
y 7→ µ1(Ay)

)
dµ2

for all A ∈ S (the integrands being measurable).

How to prove existence of µ in Th. 6b6? The problem is, measurability
of the integrand x 7→ µ2(Ax) (for arbitrary A ∈ S). We cannot express
µ2(Ax ∩ Bx), µ2(Ax ∪ Bx) in terms of µ2(Ax) and µ2(Bx). Disjoint union is

1Hint: 3c2 for y 7→ (x, y).
2Hint: use 6b3.
3Moreover, (R2,L[R2]) is not of the form (R, S1)× (R, S2); could you prove this fact?
4When dealing with measurable spaces (rather than measure spaces) “measurable set”

means just “set that belongs to the given σ-algebra”.
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unproblematic (even countable), as well as A \B when B ⊂ A; but we need
more.

It may happen that µ1, µ2 are the pushforward measures f∗m1, g∗m1 of
Lebesgue measure for some f : [0, a) → X1, g : [0, b) → X2; in this case
we may take the pushforward measure h∗m2 where h(s, t) =

(
f(s), g(t)

)
for (s, t) ∈ [0, a) × [0, b). This approach works in most cases needed for
probability theory. Moreover, by some tricks it is possible to reduce the
general case to this special case. But we prefer a more familiar way.

We introduce the algebra of sets E (not σ-algebra!) on X, generated
by {A1 × A2 : A1 ∈ S1, A2 ∈ S2} (or, equivalently, by {A1 × X2 : A1 ∈
S1} ∪ {X1 × A2 : A2 ∈ S2}). Clearly, E ⊂ S.

6b7 Lemma. In the assumptions of Th. 6b6 assume in addition that µ1(X1) <
∞, µ2(X2) <∞.

(a) There exists one and only one additive set function1 µ0 on E such that
µ0(A×B) = µ1(A)µ2(B) for all A ∈ S1, B ∈ S2.

(b) For every E ∈ E , the function x 7→ µ2(Ax) is measurable, and µ0(E) =∫
X1

(
x 7→ µ2(Ax)

)
dµ1.

Proof. Each finite partition X1 = A1 ] · · · ] Am of X1 into Ai ∈ S1 leads
to a finite algebra of sets on X1 (the 2m unions of these parts).2 Given also
a finite partition X2 = B1 ] · · · ] Bn of X2 into Bj ∈ S2, we get a product
partition X = ]i,jAi × Bj of X into mn sets of E , and the product algebra
of sets on X (the 2mn unions of these parts).

Two finite algebras on X1 are always contained (both) in some finite
algebra (since two finite partitions have a common refinement). Therefore,
two finite product algebras on X are always contained (both) in some finite
product algebra.

It follows that the union of all finite product algebras is an algebra; and
clearly, it is E .

On each finite product algebra, existence and uniqueness of the needed
additive set function are evident. On different algebras these additive set
functions conform and, taken together, give µ0, which proves (a). Also, (b)
evidently holds on each finite product algebra (since it holds for E = Ai×Bj),
therefore, on the whole E .

It is possible to adapt the procedure of Sect. 2b–2d, using sets of E in-
stead of Jordan sets, countable unions of sets of E instead of open sets, and
countable intersections of sets of E instead of compact sets. But we do not
go this way since, fortunately, a better way is well-known.

1It means, µ0(E ] F ) = µ(E) + µ(F ) for all disjoint E,F ∈ E .
2In fact, the general form of a finite algebra of sets.
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6b8 Definition. A set M of subsets of a given set X is a monotone class,
if for all A1, A2, · · · ∈M and A ⊂ X,

An ↑ A =⇒ A ∈M , An ↓ A =⇒ A ∈M .

For example, all intervals (on R) are a monotone class; but all closed
intervals are not.

6b9 Exercise. In the assumptions of Th. 6b6 assume in addition that
µ2(X2) < ∞. Then all sets A ∈ S such that the function x 7→ µ2(Ax) is
measurable are a monotone class.

Prove it.1

6b10 Exercise. An algebra of sets is a monotone class if and only if it is a
σ-algebra.

Prove it.

6b11 Theorem (Monotone class theorem). Let (X,S) be a measurable
space, E ⊂ S an algebra of sets that generates S, and M ⊂ S a monotone
class containing E . Then M = S.

Proof. WLOG, M is the monotone class generated by E . It is sufficient to
prove that M is an algebra of sets.

The set {A ∈M : X\A ∈M} is a monotone class (think, why) containing
E (think, why), therefore it is the whole M ; that is,

∀A ∈M X \ A ∈M .

Given E ∈ E , the set {A ∈ M : A ∪ E ∈ M} is a monotone class (since
An ↑ A =⇒ An ∪ E ↑ A ∪ E and An ↓ A =⇒ An ∪ E ↓ A ∪ E) containing
E , therefore it is the whole M ; that is,

∀E ∈ E ∀A ∈M A ∪ E ∈M .

Given B ∈ M , the set {A ∈ M : A ∪ B ∈ M} is a monotone class
containing E , therefore it is the whole M ; that is,

∀A,B ∈M A ∪B ∈M .

1Hint: use finiteness of µ2 when treating An ↓ A.
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Proof of Th. 6b6 (existence). By 6b7(b), 6b9 and Monotone class theorem
6b11, the function x 7→ µ2(Ax) is measurable whenever A ⊂ B ×C, B ∈ S1,
C ∈ S2, µ1(B) <∞, µ2(C) <∞ and A ∈ S. Taking Bn ↑ X1, Cn ↑ X2 we get
µ2

(
(A∩ (Bn×Cn))x

)
↑ µ2(Ax) for all A ∈ S (think, why); by 3c10, the latter

is measurable in x. We define µ(A) =
∫
X1

(
x 7→ µ2(Ax)

)
dµ1 and prove that

µ is a measure. Clearly, µ(∅) = 0; and µ(A1]A2] . . . ) = µ(A1)+µ(A2)+ . . .
by 4c16.

Now about uniqueness of the product measure, and more generally, about
uniqueness of a measure with given restriction to a generating algebra of sets.1

6b12 Lemma. Let (X,S, µ) be a measure space, µ(X) < ∞, and E ⊂ S
an algebra of sets that generates S. If ν is a measure on (X,S) such that
ν|E = µ|E , then ν = µ.

Proof. By the Monotone class theorem 6b11 it is sufficient to prove that
the set M = {A ∈ S : ν(A) = µ(A)} is a monotone class. If An ↑ A, then
ν(A) = limn ν(An) = limn µ(An) = µ(A). If An ↓ A, then X \ An ↑ X \ A,
thus ν(X \ A) = µ(X \ A), that is, ν(X) − ν(A) = µ(X) − µ(A); and
ν(X) = µ(X) <∞, since X ∈ E .

6b13 Remark. Note that E is an algebra, not just a set.2 Two different
measures may coincide on the generating set {A1×X2 : A1 ∈ S1}∪{X1×A2 :
A2 ∈ S2} (even if they are finite). Probabilistically: the joint distribution of
two random variables says much more than the pair of marginal distributions.

Proof of Th. 6b6 (uniqueness). The proof of the existence part of Th. 6b6
gives two measures

µ1,2(A) =

∫
X1

(
x 7→ µ2(Ax)

)
dµ1 , µ2,1(A) =

∫
X2

(
y 7→ µ1(Ay)

)
dµ2

on (X,S), satisfying µ1,2|E = µ0 = µ2,1|E . If µ1 and µ2 are finite, then
µ1,2 = µ2,1 by 6b12. In general, µ1,2(A) = µ2,1(A) whenever A ⊂ B × C,
B ∈ S1, C ∈ S2, µ1(B) < ∞, µ2(C) < ∞ and A ∈ S. We take Bn ↑ X1,
Cn ↑ X2 and get µ1,2(A) = limn µ1,2

(
A ∩ (Bn × Cn)

)
= limn µ2,1

(
A ∩ (Bn ×

Cn)
)

= µ2,1(A).

1Lemma 6b12 shows easily that different constructions of Lebesgue measure are equiv-
alent.

2Beware of Remark 6.9 in the textbook by Capiński and Kopp: “in order to show that
two measures on a σ-field coincide it suffices to prove that they coincide on the generating
sets of that σ-field”.
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6b14 Example. Without σ-finiteness of µ1 and µ2 measures µ1,2 and µ2,1

can differ.
Let (X1, S1, µ1) be R with Lebesgue measure, and (X2, S2, µ2) be R with

the counting measure: ∀y ∈ R µ2({y}) = 1 (S2 may be the Borel σ-algebra,
or the whole 2R). In the product X = R × R we consider the diagonal
A = {(x, y) : x = y}; being a Borel set, it belongs to S. We have Ax = {x},
Ay = {y}, µ2(Ax) = 1, µ1(Ay) = 0, thus, µ1,2(A) =

∫
R 1 dm = ∞, but

µ2,1(A) =
∫
R 0 dµ2 = 0.

The incomplete product of two σ-finite measure spaces (X1, S1, µ1) and
(X2, S2, µ2) is, by definition, the (evidently σ-finite) measure space (X,S, µ)
where (X,S) = (X1, S1)× (X2, S2) and µ is as in Theorem 6b6. The comple-
tion of this measure space is the complete product. One calls this µ the prod-
uct measure and writes µ = µ1×µ2 and (X,S, µ) = (X1, S1, µ1)×(X2, S2, µ2)
(be it complete or incomplete).

Clearly, Rm+n with Lebesgue measure is the complete product of Rm and
Rn, each with Lebesgue measure.

The next two theorems (generalizations of 6a1 and 6a15) hold whenever
(X,S, µ) = (X1, S1, µ1)×(X2, S2, µ2) is the complete product of two complete
σ-finite measure spaces.

6b15 Theorem (Tonelli). If a function f : X → [0,∞] is measurable, then
(a) its section f(x, ·) : y 7→ f(x, y) is a measurable function X2 → [0,∞]

for almost all x ∈ X1;
(b) the integral of the section x 7→

∫
X2
f(x, ·) dµ2 is a measurable function

X1 → [0,∞] (defined almost everywhere);

(c)

∫
X

f dµ =

∫
X1

(
x 7→

∫
X2

f(x, ·) dµ2

)
dµ1 ∈ [0,∞] .

6b16 Theorem (Fubini). If a function f : X → R is integrable, then
(a) its section f(x, ·) : y 7→ f(x, y) is integrable for almost all x ∈ X1;
(b) the integral of the section x 7→

∫
X2
f(x, ·) dµ2 is an integrable function

X1 → R (defined almost everywhere);

(c)

∫
X

f dµ =

∫
X1

(
x 7→

∫
X2

f(x, ·) dµ2

)
dµ1 .

6b17 Remark. If f is measurable on (X1, S1) × (X2, S2) (not completed),
then the reservations “for almost all” and “defined almost everywhere” in
these two theorems are not needed.

But in general these reservations are needed. Indeed, let Z ⊂ R be a null
set and Y ⊂ R not (Lebesgue) measurable; then f = 1lZ×Y is measurable,
but for x ∈ Z the section f(x, ·) = 1lY is not.
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Also, completeness of (X1, S1, µ1) and (X2, S2, µ2) is needed. Indeed, a
section of a Lebesgue measurable function need not be Borel (try f(x, y) =
g(y)); and even if it is Borel, its integral need not be Borel (try f(x, y) =
g(x)h(y)).

Remark 6a2 generalizes readily. Also, for f : X → [−∞,+∞], measura-
bility of f is equivalent to measurability of the function

g(x, y) =


−1 if f(x) < y < 0,

+1 if 0 < y < f(x),

0 otherwise,

and in this case∫
X

f dµ = (µ×m){(x, y) : 0 < y < f(x)}−(µ×m){(x, y) : f(x) < y < 0} =

=

∫ ∞
0

µ{x : f(x) > y} dy −
∫ ∞

0

µ{x : f(x) < −y} dy

(recall (4d3)), four cases being possible: (number)−(number),∞−(number),
(number)−∞, and ∞−∞.

Toward proving the theorems, first we reduce the complete case to the
incomplete case.

6b18 Exercise. Let (X,S, µ) be a measure space, and (X,S, µ) its com-
pletion. Then every equivalence class of measurable functions on (X,S, µ)
contains a function measurable on (X,S).

Prove it (a) for indicator functions, (b) for simple functions, and (c) in
general.1

In particular, every Lebesgue measurable function on Rd is equivalent
(that is, equal almost everywhere) to some (non-unique, of course) Borel
function. Moreover, the same holds for all measures on Rd (as before, I
mean completed Borel measures, recall the end of Sect. 3e). However, differ-
ent measures require different Borel functions (unless the given function is
already Borel).2

Below, by (a), (b), (c) we mean (a), (b), (c) of Theorem 6b15.

6b19 Exercise. Let (X,S, µ) = (X1, S1, µ1) × (X2, S2, µ2) be the complete
product of two complete σ-finite measure spaces, the completion of their
incomplete product (X,S, µ).

1Hint: (c) fk ↑ f .
2Try atomic measures (and a universally measurable function).
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(A) A set A ∈ S is a null set if and only if almost all sections Ax are null
sets.

(B) If (a), (b), (c) hold for a function f , then they hold for every function
equivalent to f .
Prove it.1

6b20 Exercise. Generalize 6a6.

Proof of Th. 6b15. By 6b18 and 6b19(B), WLOG, f is measurable on (X1, S1)×
(X2, S2) (not completed). (In this case we’ll prove a bit more, as promised
in 6b17.) By 6b6, (a), (b), (c) hold for indicators. The rest is similar to the
proof of Th. 6a1.

6b21 Exercise. Generalize 6a16.

Proof of Th. 6b16. Similar to the proof of Th. 6a15.

By default, by product space we mean the complete product space.

6b22 Exercise. Let (X,S, µ) = (X1, S1, µ1)× (X2, S2, µ2).
(a) If f ∈ L1(µ1), g ∈ L1(µ2) and h(x, y) = f(x)g(y) for x ∈ X1, y ∈ X2,

then h ∈ L1(µ), ‖h‖ = ‖f‖‖g‖ and
∫
h dµ =

(∫
f dµ1

)(∫
g dµ2

)
.

(b) If f1 : X1 → [0,∞) and f2 : X2 → [0,∞) are measurable, then
(f1 · µ1)× (f2 · µ2) = g · µ where g(x, y) = f1(x)f2(y).

Prove it.

For instance, the product of two copies of the standard Gaussian measure
γ1 = ϕ1 ·m1 on R (recall 4c29), where ϕ1(x) = 1√

2π
e−x

2/2 for x ∈ R, is the

standard Gaussian measure γ2 = ϕ2 ·m2 on R2, where ϕ2(x) = 1
2π

e−|x|
2/2 for

x ∈ R2. Interestingly, γ2 is invariant under rotations.

6c Introduction to independence 2

6c1 Definition. Two random variables X, Y : Ω→ R on a probability space
(Ω,F , P ) are independent, if

PX,Y = PX × PY .
1Hint: (A) use 6b6; (B) use (A).
2“At a purely formal level, one could call probability theory the study of measure

spaces with total measure one, but that would be like calling number theory the study
of strings of digits which terminate. At a practical level, the opposite is true: just as
number theorists study concepts (e.g. primality) that have the same meaning in every
numeral system that models the natural numbers, we shall see that probability theorists
study concepts (e.g. independence) that have the same meaning in every measure space
that models a family of events or random variables.” Terence Tao, A review of probability
theory; also Terence Tao Quotes.

https://terrytao.wordpress.com/2010/01/01/254a-notes-0-a-review-of-probability-theory/
https://terrytao.wordpress.com/2010/01/01/254a-notes-0-a-review-of-probability-theory/
http://www.azquotes.com/author/56115-Terence_Tao
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Here PX,Y is the joint distribution (recall Sect. 3d).
For instance, if the joint distribution PX,Y is the standard Gaussian mea-

sure γ2, then X, Y are independent. Moreover, in this case1 X+Y and X−Y
are also independent.

Independence means that PX,Y (A×B) = PX(A)PY (B), that is, P
(
X ∈ A,

Y ∈ B
)

= P
(
X ∈ A

)
P
(
Y ∈ B

)
for all Borel sets A,B ∈ R. The Borel

σ-algebra B[R] is generated by the algebra of sets E1 generated by intervals;
and B[R2] is generated by the algebra of sets E2 generated by boxes (rectan-
gles). By 6b12, it is sufficient to check the equality PX,Y = PX × PY on E2.
That is,

X, Y are independent if and only if

for all intervals I, J ⊂ R P
(
X ∈ I, Y ∈ J

)
= P

(
X ∈ I

)
P
(
Y ∈ J

)
.

Moreover, intervals (−∞, a] (and their products) are enough (think, why);
thus,

X, Y are independent if and only if ∀x, y ∈ R FX,Y (x, y) = FX(x)FY (y)

where FX(x) = P
(
X ≤ x

)
, FY (y) = P

(
Y ≤ y

)
, and FX,Y (x, y) = P

(
X ≤ x,

Y ≤ y
)

are the so-called cumulative distribution functions.
Note also that (by 6b12 again)

(6c2) PX is uniquely determined by FX .

For every Borel set B ∈ R, the probability P
(
X ∈ B

)
can be calculated

out of the probabilities P
(
X ≤ x

)
; but this calculation may involve a lot of

“zigzags” (recall Sect. 3b).
Similarly (irrespective of independence),

(6c3) PX,Y is uniquely determined by FX,Y .

The change of variable (4c23) gives

E f(X) =

∫
R
f dPX , E g(Y ) =

∫
R
g dPY , Eh(X, Y ) =

∫
R2

h dPX,Y

for Borel f, g : R → R, h : R2 → R. (The four cases are possible. . . ) For
independent X, Y , taking h(x, y) = f(x)g(y), we get

(6c4) E
(
f(X)g(Y )

)
=
(
E f(X)

)(
E g(Y )

)
by 6b22(a), assuming integrability of f(X) and g(Y ). In particular,

(6c5) E (XY ) = (EX)(EY ) for independent integrable X, Y .

1And only in this case!
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6d Introduction to conditioning

Consider the product (Ω,F , P ) = (Ω1,F1, P1)× (Ω2,F2, P2) of two probabil-
ity spaces. For every event A ∈ F , 6b15 gives

P (A) = E 1X where X(ω1) = P2(Aω1) for ω1 ∈ Ω1

(the expectation being taken on (Ω1,F1, P1)). In particular, for (finite or)
countable Ω1 (assuming all points of Ω1 are not null) we have

P2(Aω1) =
P (A ∩Bω1)

P (Bω1)

where sets Bω1 = {ω1} × Ω2 are a (finite or) countable partition of Ω. In
the discrete probability framework the ratio above is called the conditional
probability of the event A given the event Bω1 ;

X(ω1) = P2(Aω1) = P
(
A
∣∣Bω1

)
; X(·) = P

(
A
∣∣ ·) ;

thus,

P
(
A
)

= E 1P
(
A
∣∣·) =

∑
ω1∈Ω1

P
(
A
∣∣Bω1

)
P
(
Bω1

)
,

the so-called total probability formula.
In general, P2 need not be atomic; the denominator may vanish; and still,

P
(
A
)

= E 1P
(
A
∣∣·)

if we define

P
(
A
∣∣Bω1

)
= P2(Aω1) = P2{ω2 : (ω1, ω2) ∈ A} .

More generally, given an integrable random variable X : Ω→ R, we have the
total expectation formula

EX = E 1E
(
X
∣∣·)

where the conditional expectation E
(
X
∣∣ω1

)
is defined as

∫
Ω2
X(ω1, ·) dP2.

In particular, for X = 1lA we return to the conditional probability and the
total probability.

Also,

E (X1lA1×Ω2) = E 1

(
E
(
X
∣∣ ·)1lA1

)
for all A1 ∈ F1 ;

assuming X ≥ 0 we may rewrite it as

(X · P )(A1 × Ω2) =
(
E
(
X
∣∣ ·) · P1

)
(A1) ,

that is,

(6d1) ϕ∗(X · P ) = E
(
X
∣∣ ·) · P1

where ϕ : Ω→ Ω1 is the projection, ϕ(ω1, ω2) = ω1.
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