9 Radon-Nikodym theorem and conditioning

9a	Borel-Kolmogorov paradox	93
9 b	Radon-Nikodym theorem	94
9c	Conditioning	96
9d	More on absolute continuity	103

9a Borel-Kolmogorov paradox

Spherical coordinates on \mathbb{R}^3 may be treated as a map $\alpha:(r,\theta,\varphi)\mapsto(x,y,z)$ where

(9a1)
$$x = r \sin \theta \cos \varphi,$$
$$y = r \sin \theta \sin \varphi,$$
$$z = r \cos \theta;$$

this is a homeomorphism (moreover, diffeomorphism) between two open sets in \mathbb{R}^3 :

$$(0,\infty)\times(0,\pi)\times(-\pi,\pi)\to\mathbb{R}^3\setminus\left((-\infty,0]\times\{0\}\times\mathbb{R}\right).$$

It does not preserve Lebesgue measure m; rather, m is the image of the measure²

$$((r, \theta, \varphi) \mapsto r^2 \sin \theta) \cdot m$$
.

Less formally, one writes

$$dx dy dz = r^2 \sin \theta dr d\theta d\varphi = (r^2 dr)(\sin \theta d\theta)(d\varphi),$$

a product measure. And the uniform distribution on the ball $x^2+y^2+z^2<1$ turns into the product of three probability measures

$$\frac{3}{4\pi} dx dy dz = (3r^2 dr)(\frac{1}{2} \sin \theta d\theta)(\frac{1}{2\pi} d\varphi)$$

¹Picture from Wikipedia.

²See also Footnote 1 on page 100.

on $(0,1) \times (0,\pi) \times (-\pi,\pi)$.

According to Sect. 6d, the conditional distribution on the sphere $x^2 + y^2 + z^2 = 1$ (that is, r = 1) is given by $(\frac{1}{2}\sin\theta\,\mathrm{d}\theta)(\frac{1}{2\pi}\mathrm{d}\varphi)$. Further, the conditional distribution on the circle $x^2 + y^2 = 1$, z = 0 (that is, r = 1, $\theta = \frac{\pi}{2}$, the equator) is given by $\frac{1}{2\pi}\mathrm{d}\varphi$. And the conditional distribution on the half-circle $x^2 + z^2 = 1$, y = 0, x > 0 (that is, r = 1, $\varphi = 0$, a line of longitude) is given by $\frac{1}{2}\sin\theta\,\mathrm{d}\theta$.

Quite strange: the result is not invariant under rotations of \mathbb{R}^3 ; why?

9b Radon-Nikodym theorem

9b1 Definition. Let (X, S, μ) be a measure space. A measure ν on (X, S) is absolutely continuous (w.r.t. μ), in symbols $\nu \ll \mu$, if

$$\forall A \in S \ (\mu(A) = 0 \implies \nu(A) = 0).$$

If $\nu = f \cdot \mu$ for some measurable $f: X \to [0, \infty]$, then $\nu \ll \mu$ (recall Sect. 4c). If μ is σ -finite and $\nu = f \cdot \mu$ for some measurable $f: X \to [0, \infty)$, then ν is σ -finite (by 4c10(b)) and $\nu \ll \mu$. Here is the converse.

9b2 Theorem (Radon-Nikodym). Let (X, S, μ) be a σ -finite measure space, and ν an absolutely continuous (w.r.t. μ) σ -finite measure on (X, S). Then $\nu = f \cdot \mu$ for some measurable $f : X \to [0, \infty)$.

9b3 Remark. If ν is not σ -finite, then still $\nu = f \cdot \mu$, but $f: X \to [0, \infty]$.

This claim fails badly without σ -finiteness of μ .

9b4 Exercise. Let (X, S) be [0, 1] with Borel σ -algebra, and ν the Lebesgue measure on it. Prove that ν is not of the form $f \cdot \mu$, if

- (a) μ is the counting measure;
- (b) $\mu = \infty \cdot \nu$.

9b5 Remark. Uniqueness of f (up to equivalence) is ensured by 7a4.

Proof of Th. 9b2 and Remark 9b3. WLOG, $\mu(X) < \infty$. Indeed, a σ -finite μ is equivalent to some finite measure μ_1 (by 5b8), and $\nu \ll \mu \iff \nu \ll \mu_1$ (since μ and μ_1 have the same null sets, as noted before 5b7); also, $\nu = f \cdot \mu_1 \iff \nu = f \frac{\mathrm{d}\mu_1}{\mathrm{d}\mu} \cdot \mu$ (by 4b7).

• From now on, μ is finite.

¹ "Many quite futile arguments have raged between otherwise competent probabilists over which of these results is 'correct'." E.T. Jaynes (quote from Wikipedia).

If ν is not σ -finite, we take $A_n \in S$ such that $\nu(A_n) < \infty$ and $\mu(A_n) \to \sup_{\nu(A) < \infty} \mu(A)$; we introduce $A_\infty = \bigcup_n A_n$. Clearly, ν is σ -finite on A_∞ ; and $\nu = \infty \cdot \mu$ on $X \setminus A_\infty$ (think, why). Thus, 9b2 implies that $\nu = f \cdot \mu$ for some measurable $f: X \to [0, \infty]$.

Given a σ -finite ν , we may assume WLOG that ν is finite (similarly to μ).

• From now on, also ν is finite.

If $\nu = f \cdot (\mu + \nu)$ for some f, then $(1 - f) \cdot \nu = f \cdot \mu$, and 1 - f > 0 μ -a.e.; $\nu \ll \mu$ implies 1 - f > 0 ν -a.e. (think, why), therefore $\nu = \frac{f}{1 - f} \cdot \mu$.

• From now on, in addition, $\nu \leq \mu$.

We need f such that $\nu(A) = (f \cdot \mu)(A) = \int f \mathbb{1}_A d\mu = \langle f, \mathbb{1}_A \rangle_\mu$ for all $A \in S$; here the inner product is taken in $L_2(\mu)$. It is sufficient to find $f \in L_2(\mu)$ such that $\langle f, g \rangle_\mu = \int g \, d\nu$ for all $g \in L_2(\mu)$ (then surely $f \geq 0$). Taking into account that $|\int g \, d\nu| = |\langle g, \mathbb{1} \rangle_\nu| \leq ||g||_\nu ||\mathbb{1}||_\nu = \sqrt{\nu(X) \int g^2 \, d\nu} \leq \sqrt{\nu(X) \int g^2 \, d\mu} = \sqrt{\nu(X)} ||g||_\mu$ we see that the linear functional $\ell : L_2(\mu) \to \mathbb{R}$ defined by $\ell(g) = \int g \, d\nu$ is bounded. Thus, Th. 9b2 is reduced to the following well-known fact from the theory of Hilbert spaces.

9b6 Lemma. For every bounded linear functional ℓ on $L_2(\mu)$ there exists $f \in L_2(\mu)$ such that

$$\forall g \in L_2(\mu) \ \ell(g) = \langle f, g \rangle.$$

Usually, $L_2(\mu)$ is separable, therefore has an orthonormal basis $(e_n)_n$, and we just take

$$f = \sum_{n} \ell(e_n) e_n$$

(it converges; think, why); then $\ell(g) = \langle f, g \rangle$ for $g = e_n$, therefore, for all g.

It is possible to generalize this argument to nonseparable spaces. Alternatively, a geometric proof is well-known. WLOG, the norm $\sup_{\|f\|\leq 1} \ell(f)$ of ℓ is 1. For every $\varepsilon \in (0,1)$ and f such that $\ell(f) \geq 1 - \varepsilon$ we have

- (a) $|\ell(g) \langle f, g \rangle| \le \sqrt{2\varepsilon}$ for all g of norm ≤ 1 ;
- (b) $||f g|| \le 2\sqrt{2\varepsilon \varepsilon^2}$ for all g of norm ≤ 1 such that $\ell(g) \ge 1 \varepsilon$; just elementary geometry on the Euclidean plane containing f and g.

Thus, every sequence $(f_n)_n$ such that $\ell(f_n) \to 1$, being Cauchy sequence, converges to some f, and $\forall g \in L_2(\mu) \ \ell(g) = \langle f, g \rangle$.

Theorem 9b2 is thus proved.

9b7 Remark. Let (X, S) and (Y, T) be measurable spaces, and $\varphi : X \to Y$ measurable map. If measures μ_1, ν_1 on (X, S) satisfy $\nu_1 \ll \mu_1$, then pushforward measures $\mu_2 = \varphi_* \mu_1$, $\nu_2 = \varphi_* \nu_1$ satisfy $\nu_2 \ll \mu_2$ (think, why). Therefore, every measure of the form $\varphi_*(f \cdot \mu)$ is also of the form $g \cdot \varphi_* \mu$.

9b8 Definition. Two measures μ, ν on a measure space (X, S) are mutually singular (in symbols, $\mu \perp \nu$) if there exists $A \in S$ such that $\mu(A) = 0$ and $\nu(X \setminus A) = 0$.

See 3d5 for a nonatomic measure on [0,1] that is singular to Lebesgue measure.

9b9 Exercise. Two σ -finite measures μ, ν on (X, S) are mutually singular if and only if $\frac{d\mu}{d(\mu+\nu)} \in \{0, 1\}$ a.e. Prove it.

9b10 Theorem (Lebesgue's decomposition theorem). Let (X, S, μ) be a σ -finite measure space, and ν a σ -finite measure on (X, S). Then ν can be expressed uniquely as a sum of two measures, $\nu = \nu_{\rm a} + \nu_{\rm s}$, where $\nu_{\rm a} \ll \mu$ and $\nu_{\rm s} \perp \mu$.

9b11 Exercise. Prove Theorem 9b10.¹

9c Conditioning

- **9c1 Definition.** Given a probability space (Ω, \mathcal{F}, P) , a measurable space (E, S) and a measurable map $\varphi : \Omega \to E$ from (Ω, \mathcal{F}) to (E, S), we define the *conditional expectation* $\mathbb{E}(X | \varphi)$ of an integrable $X : \Omega \to \mathbb{R}$
- (a) for $X: \Omega \to [0, \infty)$, as a measurable $g: E \to [0, \infty)$ such that $\varphi_*(X \cdot P) = g \cdot \varphi_* P$;
 - (b) in general, by $\mathbb{E}(X|\varphi) = \mathbb{E}(X_+|\varphi) \mathbb{E}(X_-|\varphi)$.
- **9c2 Remark.** Existence of $\mathbb{E}(X|\varphi)$ is ensured by 9b7, uniqueness (up to equivalence) by 9b5. The equivalence class of $\mathbb{E}(X|\varphi)$ is uniquely determined by the equivalence class of X.
- **9c3 Exercise.** The conditional expectation is a linear operator from $L_1(P)$ to $L_1(\varphi_*P)$, and $\|\mathbb{E}(X|\varphi)\| \leq \|X\|$, and $\mathbb{E}_1(\mathbb{E}(X|\varphi)) = \mathbb{E}X$ (where \mathbb{E}_1 is the integral w.r.t. φ_*P).

Prove it.²

¹Hint: consider $\frac{d\mu}{d(\mu+\nu)}$.

²Recall the proof of 4d2.

Some convenient notation:

(9c4)
$$\mathbb{P}(A|\varphi) = \mathbb{E}(\mathbb{1}_A|\varphi)$$
 for $A \in \mathcal{F}$ ("conditional probability");

(9c5)
$$\mathbb{E}(X | \varphi = b) = \mathbb{E}(X | \varphi)(b) \text{ for } b \in E.$$

By 4c21, $\varphi_*((f \circ \varphi) \cdot P) = f \cdot \varphi_* P$; applying this to f_+, f_- we get for a $\varphi_* P$ -integrable f

(9c6)
$$\mathbb{E}(f \circ \varphi | \varphi) = f,$$

that is,

(9c7)
$$\mathbb{E}(f(\varphi)|\varphi=b) = f(b).$$

Moreover, assuming integrability of X, $f \circ \varphi$ and $(f \circ \varphi)X$,

(9c8)
$$\mathbb{E}\left((f \circ \varphi)X \middle| \varphi\right) = f \mathbb{E}\left(X \middle| \varphi\right),$$

since for $X \ge 0$, $f \ge 0$ (otherwise, take f_+, f_-, X_+, X_-)

$$\varphi_* \big((f \circ \varphi) X \cdot P \big) = \varphi_* \big((f \circ \varphi) \cdot (X \cdot P) \big) = f \cdot \varphi_* (X \cdot P) =$$

$$= f \cdot \big(\mathbb{E} \big(X \, | \, \varphi \big) \cdot \varphi_* P \big) = \big(f \, \mathbb{E} \big(X \, | \, \varphi \big) \big) \cdot \varphi_* P \,.$$

That is,

(9c9)
$$\mathbb{E}(f(\varphi)X | \varphi = b) = f(b) \mathbb{E}(X | \varphi = b)$$

("taking out what is known", or "pulling out known factors"). The equality $\varphi_*(X \cdot P) = g \cdot \varphi_* P$ may be rewritten as

(9c10)
$$\int_{\varphi^{-1}(B)} X \, \mathrm{d}P = \int_B g \, \mathrm{d}\varphi_* P \qquad \text{for all } B \in S$$

or, using (4c22), as

$$(9c11) \qquad \int_{\varphi^{-1}(B)} X \, \mathrm{d}P = \int_{\varphi^{-1}(B)} g \circ \varphi \, \mathrm{d}P \qquad \text{for all } B \in S \, .$$

Introducing the σ -algebra \mathcal{F}_{φ} ("generated by φ ") by

$$\mathcal{F}_{\varphi} = \{ \varphi^{-1}(B) : B \in S \} ,$$

we rewrite (9c11) as $\int_A X dP = \int_A g \circ \varphi dP$ for all $A \in \mathcal{F}_{\varphi}$, that is, $(X \cdot P)|_{\mathcal{F}_{\varphi}} = ((g \circ \varphi) \cdot P)|_{\mathcal{F}_{\varphi}}$; also, $g \circ \varphi$ is measurable on $(\Omega, \mathcal{F}_{\varphi})$.

Thus, we may forget φ , consider instead a sub- σ -algebra $\mathcal{F}_1 \subset \mathcal{F}$, and define $\mathbb{E}(X|\mathcal{F}_1)$ as an integrable function on $(\Omega, \mathcal{F}_1, P_{\mathcal{F}_1})$ such that¹

$$(X \cdot P)|_{\mathcal{F}_1} = \mathbb{E}(X | \mathcal{F}_1) \cdot P|_{\mathcal{F}_1} \text{ for } X \ge 0,$$

and in general,

$$\int_{A} X \, dP = \int_{A} \mathbb{E}(X | \mathcal{F}_{1}) \, dP \quad \text{for all } A \in \mathcal{F}_{1},$$

that is,

$$\mathbb{E}(X\mathbb{1}_A) = \mathbb{E}(\mathbb{E}(X|\mathcal{F}_1)\mathbb{1}_A) \text{ for all } A \in \mathcal{F}_1.$$

This approach may seem to be more general, but in fact, it is not. Given $\mathcal{F}_1 \subset \mathcal{F}$, we may take $(E,S) = (\Omega,\mathcal{F}_1)$ and $\varphi = \mathrm{id}$. Thus, all formulas written in terms of $\mathbb{E}(\cdot|\varphi)$ may be rewritten (and still hold!) in terms of $\mathbb{E}(\cdot|\mathcal{F}_1)$. In particular, (9c6)–(9c9) turn into

(9c12)
$$\mathbb{E}(f|\mathcal{F}_1) = f$$
 for \mathcal{F}_1 -measurable, integrable f ;

(9c13)
$$\mathbb{E}(fX|\mathcal{F}_1) = f\mathbb{E}(X|\mathcal{F}_1) \text{ for } \mathcal{F}_1\text{-measurable } f$$

(integrability of f, X and fX is assumed, integrability of $f \mathbb{E}(X | \mathcal{F}_1)$ follows).

Also, by 9c3, the conditional expectation is a linear operator $L_1(\Omega, \mathcal{F}, P) \to L_1(\Omega, \mathcal{F}_1, P|_{\mathcal{F}_1}) \subset L_1(\Omega, \mathcal{F}, P)$, and

(9c14)
$$\|\mathbb{E}(X|\mathcal{F}_1)\|_1 \leq \|X\|_1$$
,

(9c15)
$$\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{1}\right)\right) = \mathbb{E}X$$

("law of total 2 expectation").

By 5f4, $L_2(P) \subset L_1(P)$. Let us consider $Y = \mathbb{E}(X | \mathcal{F}_1)$ for $X \in L_2(P)$. For every \mathcal{F}_1 -measurable $Z \in L_2(P)$ we know that XZ is integrable, and (9c13) gives $\mathbb{E}(ZX | \mathcal{F}_1) = Z\mathbb{E}(X | \mathcal{F}_1) = ZY$. Using (9c14), $||ZY||_1 \leq ||ZX||_1 \leq ||Z||_2 ||X||_2$, which implies $||Y||_2 \leq ||X||_2$ (take $Z_n \to Y$, $|Z_n| \leq |Y|$), thus, $Y \in L_2$. Using (9c15), $\mathbb{E}(ZX) = \mathbb{E}(ZY)$, that is, $\langle Z, X \rangle = \langle Z, Y \rangle$. We see that X - Y is orthogonal to the subspace $L_2(\Omega, \mathcal{F}_1, P|_{\mathcal{F}_1})$ of $L_2(\Omega, \mathcal{F}, P)$, and Y belongs to this subspace, which shows that

(9c16)
$$\mathbb{E}(X|\mathcal{F}_1)$$
 is the orthogonal projection of X to $L_2(\Omega, \mathcal{F}_1, P|_{\mathcal{F}_1})$

(in other words, the best approximation...), whenever $X \in L_2(P)$. Taking into account that $L_2(P)$ is dense in $L_1(P)$ we may say that the conditional expectation is the orthogonal projection extended by continuity to $L_1(P)$.

¹For a \mathcal{F}_1 -measurable f we have $\int f \, dP = \int f \, d(P|_{\mathcal{F}_1})$, as was noted before 4c24.

²Or "iterated".

 $^{^3}$ The continuity in L_1 metric does not follow just from continuity in L_2 metric; specific properties of this operator are used.

9c17 Exercise. (a) Let $b \in E$ be an atom of φ_*P , that is, $\{b\} \in S$ and $P(\varphi^{-1}(b)) > 0$. Then

$$\mathbb{P}(A | \varphi = b) = \frac{P(A \cap \varphi^{-1}(b))}{P(\varphi^{-1}(b))}.$$

(b) Let B be an atom of $P|_{\mathcal{F}_1}$, that is, $B \in \mathcal{F}_1$, P(B) > 0, and

$$\forall C \in \mathcal{F}_1 \quad (C \subset B \implies P(C) \in \{0, P(B)\}).$$

Then

$$\mathbb{P}(A|\mathcal{F}_1) = \frac{P(A \cap B)}{P(B)}$$
 on B .

Prove it.

We see that an atom leads to a conditional measure,

$$P_b: A \mapsto \frac{P(A \cap \varphi^{-1}(b))}{P(\varphi^{-1}(b))}, \quad \text{or} \quad P_B: A \mapsto \frac{P(A \cap B)}{P(B)},$$

a probability measure concentrated on $\varphi^{-1}(b)$, or B; and in this case, the conditional expectation is the integral w.r.t. the conditional measure,

$$\mathbb{E}(X | \varphi = b) = \int X dP_b, \quad \text{or} \quad \mathbb{E}(X | \mathcal{F}_1) = \int X dP_B \text{ on } B$$

(check it). Also, an atom is "self-sufficient": in order to know its conditional measure we need to know only B (or $\varphi^{-1}(b)$) rather than the whole \mathcal{F}_1 (or φ).

In the general theory, existence of conditional measures is problematic.¹ But in specific (non-pathological) examples it usually exists and may be calculated (more or less) explicitly.

9c18 Example. The special case treated in Sect. 6d: $(\Omega, \mathcal{F}, P) = (\Omega_1, \mathcal{F}_1, P_1) \times (\Omega_2, \mathcal{F}_2, P_2)$ and $\varphi(\omega_1, \omega_2) = \omega_1$. The conditional measure P_{ω_1} is the image of P_2 under the embedding $\omega_2 \mapsto (\omega_1, \omega_2)$.

9c19 Example. Let Ω be the unit disk $\{(x,y): x^2 + y^2 < 1\}$ on \mathbb{R}^2 , with the Lebesgue σ -algebra \mathcal{F} and the uniform distribution P (with the constant density $1/\pi$); and let $\varphi(x,y)$ be the polar angle,

$$x = r \cos \theta$$
 where $r = \sqrt{x^2 + y^2}$ $\theta = \varphi(x, y)$.

¹It holds for standard probability spaces, and may fails otherwise.

(We neglect the origin.)

We have a homeomorphism (moreover, diffeomorphism) between two open sets in \mathbb{R}^2 :

$$\alpha: (0,1) \times (-\pi,\pi) \to \Omega \setminus ((-1,0] \times \{0\})$$
. $\alpha(r,\theta) = (x,y)$.

Using elementary geometry,

$$P(\alpha((0,r)\times(\theta_1,\theta_2))) = \frac{1}{\pi}\frac{\theta_2-\theta_1}{2}r^2 = \left(\int_{\theta_1}^{\theta_2} \frac{\mathrm{d}\theta}{2\pi}\right)\left(\int_0^r 2\rho \,\mathrm{d}\rho\right)$$

for $-\pi \leq \theta_1 \leq \theta_2 \leq \pi$ and $0 \leq r \leq 1$, which means that P is the image of the product measure $\frac{d\theta}{2\pi} 2r dr$ on $(0,1) \times (-\pi,\pi)$. (Indeed, the latter measure coincides with $(\alpha^{-1})_*P$ on the algebra generated by boxes.)¹

Neglecting the null set $(-1,0] \times \{0\} \subset \Omega$ we see that conditioning on the map $\varphi : \Omega \to (-\pi,\pi)$, $\varphi(x,y) = \theta$, is equivalent² to conditioning on the projection $(0,1) \times (-\pi,\pi) \to (-\pi,\pi)$, $(r,\theta) \mapsto \theta$. Treated as random variables, r and θ are independent, and the distribution of r has the density 2r; the same is the conditional distribution of r given θ . Thus,

$$\mathbb{E}(X | \varphi = \theta) = \int_0^1 X(r \cos \theta, r \sin \theta) 2r dr;$$

$$\mathbb{E}(X | \mathcal{F}_{\varphi})(x, y) = \int_0^1 X\left(\frac{rx}{\sqrt{x^2 + y^2}}, \frac{ry}{\sqrt{x^2 + y^2}}\right) 2r dr.$$

9c20 Example. Still, the same Ω (the disk), \mathcal{F} and P, but now let φ be the projection $(x,y) \mapsto x$ from Ω to (-1,1).

Treating P as a measure on \mathbb{R}^2 we see that it is not a product measure (think, why), but it has a density $\frac{1}{\pi} \mathbb{1}_{\Omega}$ w.r.t. the product measure $m_2 = m_1 \times m_1$. Thus,

$$\int X dP = \int dx \int dy X(x,y) \frac{1}{\pi} \mathbb{1}_{\Omega}(x,y);$$

for $X \geq 0$ we see that $\varphi_*(X \cdot P)$ has the density $x \mapsto \int X(x,y) \frac{1}{\pi} \mathbb{1}_{\Omega}(x,y) dy$ w.r.t. m_1 . In particular, taking X = 1 we see that $\varphi_*(P)$ has the density

¹By the way, this is a special case of a well-known change of variable theorem from Analysis-3: if $U,V\subset\mathbb{R}^d$ are open sets and $\varphi:U\to V$ a diffeomorphism, then $\int_U (f\circ\varphi)|\det D\varphi|\,\mathrm{d} m=\int_V f\,\mathrm{d} m$ for every compactly supported continuous function f on V. A limiting procedure gives $\int_B |\det D\varphi|\,\mathrm{d} m=m(\varphi(B))$ for every box B such that $\overline{B}\subset U$. It follows that $(\varphi^{-1})_*m=|\det D\varphi|\cdot m$ on every B, and therefore, on the whole U

 $^{^2}$ See also 9c22.

 $x \mapsto \int \frac{1}{\pi} \mathbb{1}_{\Omega}(x, y) \, \mathrm{d}y = \frac{2}{\pi} \sqrt{1 - x^2}$ (and 0 if $x^2 > 1$) w.r.t. m_1 . Thus, $\varphi_*(X \cdot P)$ has the density¹

$$\frac{\pi}{2\sqrt{1-x^2}} \int X(x,y) \frac{1}{\pi} \mathbb{1}_{\Omega}(x,y) \, \mathrm{d}y = \frac{1}{2\sqrt{1-x^2}} \int_{-\sqrt{1-x^2}}^{+\sqrt{1-x^2}} X(x,y) \, \mathrm{d}y$$

w.r.t. $\varphi_*(P)$. It means that

$$\mathbb{E}(X | \varphi = x) = \frac{1}{2\sqrt{1 - x^2}} \int_{-\sqrt{1 - x^2}}^{+\sqrt{1 - x^2}} X(x, y) \, dy \quad \text{for } -1 < x < 1$$

(just the mean value on the section) for $X \geq 0$, and therefore for arbitrary X.

We observe another manifestation of the Borel-Kolmogorov paradox: by 9c19, the conditional density of y given $\theta = \pi/2$ is proportional to y, while by 9c20, the conditional density of y given x = 0 is constant.

As noted after 9c17, a condition of positive probability is self-sufficient. Now we see that a condition of zero probability is not. Being unable to divide by zero, we need a limiting procedure, involving a neighborhood of the given condition.

9c21 Exercise. Let $(\Omega, \mathcal{F}, Q) = (\Omega_1, \mathcal{F}_1, Q_1) \times (\Omega_2, \mathcal{F}_2, Q_2)$ (probability spaces), $P \ll Q$ another probability measure on (Ω, \mathcal{F}) , and $\varphi : \Omega \to \Omega_1$ the projection $\varphi(\omega_1, \omega_2) = \omega_1$. Then, on (Ω, \mathcal{F}, P) , the conditioning is

$$\mathbb{E}(X | \varphi = \omega_1) = \int_{\Omega_2} \frac{f(\omega_1, \cdot)}{f_1(\omega_1)} X(\omega_1, \cdot) dQ_2$$

where $f = \frac{dP}{dQ}$ and $f_1(\omega_1) = \int_{\Omega_2} f(\omega_1, \cdot) dQ_2$.

Formulate it accurately, and prove.²

In this case we have conditional measures, and moreover, conditional densities (w.r.t. Q_2 , not w.r.t. $Q_1 \times Q_2$).

¹Indeed, if $\nu = f \cdot \mu$, $0 < f < \infty$, and $\xi = g \cdot \mu$, then $\mu = \frac{1}{f} \cdot \nu$ and so $\xi = g \cdot \left(\frac{1}{f} \cdot \nu\right) = \frac{g}{f} \cdot \nu$.

²Hint: similar to 9c20; what about $f_1(\omega_1) = 0$?

9c22 Exercise. Let $(\Omega_1, \mathcal{F}_1, P_1)$ and $(\Omega_2, \mathcal{F}_2, P_2)$ be probability spaces, α : $\Omega_1 \to \Omega_2$ a measure preserving map, (E, S) a measurable space, and φ : $\Omega_2 \to E$ a measurable map from $(\Omega_2, \mathcal{F}_2)$ to (E, S). Then

$$\mathbb{E}(X \circ \alpha | \varphi \circ \alpha) = \mathbb{E}(X | \varphi)$$

for all $X \in L_1(P_2)$.

Prove it.

9c23 Exercise. Let the joint distribution $P_{X,Y}$ of two random variables X, Y be absolutely continuous (w.r.t. the two-dimensional Lebesgue measure m_2). Then

$$\mathbb{E}(Y | X = x) = \int y \, p_{Y|X=x}(y) \, \mathrm{d}y$$

where

$$p_{Y|X=x}(y) = \frac{p_{X,Y}(x,y)}{p_X(x)}, \quad p_X(x) = \int p_{X,Y}(x,y) \, dy, \quad p_{X,Y} = \frac{dP_{X,Y}}{dm_2}.$$

Formulate it accurately, and prove.¹

Back to the "great circle puzzle" of Sect. 9a. Suppose that a random point is distributed uniformly on the sphere. What is the conditional distribution on a given great circle?

This question cannot be answered without asking first, how is this great circle obtained from the random point.²

One case: there is a special (nonrandom) point ("the North Pole"), and we are given the great circle through the North Pole and the random point. Then the conditional density is $\frac{1}{2}\sin\theta$, where θ is the angle to the North Pole.

Another case: the given great circle is chosen at random among all great circles containing the random point. Equivalently: the "North Pole" is chosen at random, uniformly, independently of the random point. Then the conditional density is constant, $\frac{1}{2\pi}$.

Having conditional measures, it is tempting to define conditional expectation of X as the integral w.r.t. the conditional measure, requiring just integrability of X w.r.t. almost all conditional measures (which is necessary and

¹Hint: 9c21, 9c22.

²"... the term 'great circle' is ambiguous until we specify what limiting operation is to produce it. The intuitive symmetry argument presupposes the equatorial limit; yet one eating slices of an orange might presuppose the other." E.T. Jaynes (quote from Wikipedia).

³The proof involves the invariant measure on the group of rotations ("Haar measure").

not sufficient for unconditional integrability, since the conditional expectation of |X| need not be integrable). Then, however, strange things happen. For example, it may be that $\mathbb{E}(X|\mathcal{F}_1) > 0$ a.s., but $\mathbb{E}(X|\mathcal{F}_2) < 0$ a.s. An example (sketch): $\mathbb{P}(X = n, Y = n+1) = \mathbb{P}(X = n+1, Y = n) = 0.5p^n(1-p)$ for $n = 0, 1, 2, \ldots$; then $\mathbb{E}(a^Y|X = x) = \frac{pa+a^{-1}}{1+p}a^x$ for $x = 1, 2, \ldots$; we take ap > 1 and get $\mathbb{E}(a^Y|X) > a^X$ a.s., but also $\mathbb{E}(a^X|Y) > a^Y$ a.s.¹ Would you prefer to gain a^X or a^Y in a game?

9d More on absolute continuity

9d1 Proposition. Let (X, S, μ) be a measure space, and ν a finite measure on (X, S). Then

$$\nu \ll \mu \iff \forall \varepsilon > 0 \; \exists \delta > 0 \; \forall A \in S \; \left(\mu(A) < \delta \implies \nu(A) < \varepsilon \right).$$

Proof. "\(\sim \)" is easy: $\mu(A) = 0$ implies $\forall \varepsilon \ \nu(A) < \varepsilon$.

"\iff ": Otherwise we have ε and $A_n \in S$ such that $\mu(A_n) \to 0$ but $\nu(A_n) \geq \varepsilon$. WLOG, $\sum_n \mu(A_n) < \infty$. Taking $B_n = A_n \cup A_{n+1} \cup \ldots$ we have $\mu(B_n) \to 0$, $\nu(B_n) \geq \varepsilon$, and $B_n \downarrow B$ for some B. Thus, $\mu(B) = 0$, but $\nu(B) \geq \varepsilon$ (due to finiteness of ν), in contradiction to $\nu \ll \mu$.

9d2 Proposition. Let (X, S, μ) be a measure space, $\mathcal{E} \subset S$ a generating algebra of sets, μ be \mathcal{E} - σ -finite,² and ν a finite measure on (X, S). Then

$$\nu \ll \mu \quad \Longleftrightarrow \quad \forall \varepsilon > 0 \; \exists \delta > 0 \; \forall E \in \mathcal{E} \; \left(\; \mu(E) < \delta \quad \Longrightarrow \quad \nu(E) < \varepsilon \; \right).$$

Proof. " \Longrightarrow " follows easily from 9d1 (since $\mathcal{E} \subset S$).

"\(\iff \)": By 9d1 it is sufficient to prove that $\mu(A) < \frac{1}{2}\delta \implies \nu(A) < 2\varepsilon$. Given $A \in S$ such that $\mu(A) < \frac{1}{2}\delta$, 7b4 applies to $\mu + \nu$ (think, why) giving $E \in \mathcal{E}$ such that $(\mu + \nu)(E\triangle A) < \min(\frac{1}{2}\delta, \varepsilon)$. Then $\mu(E) \leq \mu(A) + \mu(E\triangle A) < \frac{1}{2}\delta + \frac{1}{2}\delta = \delta$, whence $\nu(E) < \varepsilon$ and $\nu(A) \leq \nu(E) + \nu(E\triangle A) < \varepsilon + \varepsilon = 2\varepsilon$.

In particular, we may take (X, S, μ) to be \mathbb{R} (or \mathbb{R}^d) with Lebesgue measure (or arbitrary locally finite measure), and \mathcal{E} the algebra generated by intervals (or boxes).

9d3 Definition. A continuous function $F:[a,b] \to \mathbb{R}$ is absolutely continuous, if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every n and disjoint intervals $(a_1, b_1), \ldots, (a_n, b_n) \subset [a, b]$,

$$\sum_{k=1}^{n} (b_k - a_k) < \delta \implies \sum_{k=1}^{n} |F(b_k) - F(a_k)| < \varepsilon.$$

¹Recall 1b1: $-\frac{1}{2} = \frac{1}{2} - 1 + 1 - 1 + \dots = +\frac{1}{2}$.

²As defined before 7b4.

9d4 Proposition. A finite nonatomic measure μ on \mathbb{R} is absolutely continuous (w.r.t. Lebesgue measure) if and only if the function

$$F_{\mu}: x \mapsto \mu((-\infty, x])$$

is absolutely continuous on every [a, b].

9d5 Exercise. Prove Prop. 9d4.

9d6 Corollary. An increasing continuous function F on [a, b] is absolutely continuous if and only if there exists $f \in L_1[a, b]$ such that $F(x) = \int_a^x f \, dm$ for all $x \in [a, b]$.

Taking $F = F_{\mu}$ for μ of 3d5 we get a continuous but not absolutely continuous increasing function on [0, 1].¹

Index

absolutely continuous Radon-Nikodym theorem, 94 function, 104 measure, 94 singular measure, 96 conditional $\mathbb{E}(X|\mathcal{F}_1), 98$ density, 101 $\mathbb{E}(X | \varphi = b), 97$ expectation, 96 $\mathbb{E}(X|\varphi), 96$ measure, 99, 101 $\mathcal{F}_{\varphi}, 97$ probability, 97 $\nu \ll \mu$, 94 $\mathbb{P}(A|\varphi), 97$ Lebesgue's decomposition theorem, 96

¹Known as "Cantor function", "Cantor ternary function", "Lebesgue's singular function", "the Cantor-Vitali function", "the Cantor staircase function" and even "the Devil's staircase", see Wikipedia.