9 Radon-Nikodym theorem and conditioning

9a Borel-Kolmogorov paradox 93
9b Radon-Nikodym theorem 94
9c Conditioning 96
9d More on absolute continuity 103

9a Borel-Kolmogorov paradox

Spherical coordinates on \mathbb{R}^{3} may be treated as a map $\alpha:(r, \theta, \varphi) \mapsto(x, y, z)$ where ${ }^{1}$

$$
\begin{gather*}
x=r \sin \theta \cos \varphi, \\
y=r \sin \theta \sin \varphi, \tag{9a1}\\
z=r \cos \theta
\end{gather*}
$$

this is a homeomorphism (moreover, diffeomorphism) between two open sets in \mathbb{R}^{3} :

$$
(0, \infty) \times(0, \pi) \times(-\pi, \pi) \rightarrow \mathbb{R}^{3} \backslash((-\infty, 0] \times\{0\} \times \mathbb{R})
$$

It does not preserve Lebesgue measure m; rather, m is the image of the measure ${ }^{2}$

$$
\left((r, \theta, \varphi) \mapsto r^{2} \sin \theta\right) \cdot m .
$$

Less formally, one writes

$$
\mathrm{d} x \mathrm{~d} y \mathrm{~d} z=r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \varphi=\left(r^{2} \mathrm{~d} r\right)(\sin \theta \mathrm{d} \theta)(\mathrm{d} \varphi),
$$

a product measure. And the uniform distribution on the ball $x^{2}+y^{2}+z^{2}<1$ turns into the product of three probability measures

$$
\frac{3}{4 \pi} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\left(3 r^{2} \mathrm{~d} r\right)\left(\frac{1}{2} \sin \theta \mathrm{~d} \theta\right)\left(\frac{1}{2 \pi} \mathrm{~d} \varphi\right)
$$

[^0]on $(0,1) \times(0, \pi) \times(-\pi, \pi)$.
According to Sect. 6 d , the conditional distribution on the sphere $x^{2}+$ $y^{2}+z^{2}=1$ (that is, $r=1$) is given by $\left(\frac{1}{2} \sin \theta \mathrm{~d} \theta\right)\left(\frac{1}{2 \pi} \mathrm{~d} \varphi\right)$. Further, the conditional distribution on the circle $x^{2}+y^{2}=1, z=0$ (that is, $r=1$, $\theta=\frac{\pi}{2}$, the equator) is given by $\frac{1}{2 \pi} \mathrm{~d} \varphi$. And the conditional distribution on the half-circle $x^{2}+z^{2}=1, y=0, x>0$ (that is, $r=1, \varphi=0$, a line of longitude) is given by $\frac{1}{2} \sin \theta \mathrm{~d} \theta$.

Quite strange: the result is not invariant under rotations of \mathbb{R}^{3}; why? ${ }^{1}$

9b Radon-Nikodym theorem

9b1 Definition. Let (X, S, μ) be a measure space. A measure ν on (X, S) is absolutely continuous (w.r.t. μ), in symbols $\nu \ll \mu$, if

$$
\forall A \in S(\mu(A)=0 \Longrightarrow \nu(A)=0)
$$

If $\nu=f \cdot \mu$ for some measurable $f: X \rightarrow[0, \infty]$, then $\nu \ll \mu$ (recall Sect. 4c). If μ is σ-finite and $\nu=f \cdot \mu$ for some measurable $f: X \rightarrow[0, \infty)$, then ν is σ-finite (by $4 \mathrm{c} 10(\mathrm{~b}))$ and $\nu \ll \mu$. Here is the converse.

9b2 Theorem (Radon-Nikodym). Let (X, S, μ) be a σ-finite measure space, and ν an absolutely continuous (w.r.t. μ) σ-finite measure on (X, S). Then $\nu=f \cdot \mu$ for some measurable $f: X \rightarrow[0, \infty)$.

9b3 Remark. If ν is not σ-finite, then still $\nu=f \cdot \mu$, but $f: X \rightarrow[0, \infty]$.
This claim fails badly without σ-finiteness of μ.
9b4 Exercise. Let (X, S) be $[0,1]$ with Borel σ-algebra, and ν the Lebesgue measure on it. Prove that ν is not of the form $f \cdot \mu$, if
(a) μ is the counting measure;
(b) $\mu=\infty \cdot \nu$.

9b5 Remark. Uniqueness of f (up to equivalence) is ensured by 7a4.
Proof of Th. $9 \mathrm{b2}$ and Remark 9b3. WLOG, $\mu(X)<\infty$. Indeed, a σ-finite μ is equivalent to some finite measure μ_{1} (by 5b8), and $\nu \ll \mu \Longleftrightarrow \nu \ll \mu_{1}$ (since μ and μ_{1} have the same null sets, as noted before 5 b 7); also, $\nu=$ $f \cdot \mu_{1} \Longleftrightarrow \nu=f \frac{\mathrm{~d} \mu_{1}}{\mathrm{~d} \mu} \cdot \mu$ (by 4b7).

- From now on, μ is finite.

[^1]If ν is not σ-finite, we take $A_{n} \in S$ such that $\nu\left(A_{n}\right)<\infty$ and $\mu\left(A_{n}\right) \rightarrow$ $\sup _{\nu(A)<\infty} \mu(A)$; we introduce $A_{\infty}=\cup_{n} A_{n}$. Clearly, ν is σ-finite on A_{∞}; and $\nu=\infty \cdot \mu$ on $X \backslash A_{\infty}$ (think, why). Thus, 9b2 implies that $\nu=f \cdot \mu$ for some measurable $f: X \rightarrow[0, \infty]$.

Given a σ-finite ν, we may assume WLOG that ν is finite (similarly to $\mu)$.

- From now on, also ν is finite.

If $\nu=f \cdot(\mu+\nu)$ for some f, then $(1-f) \cdot \nu=f \cdot \mu$, and $1-f>0 \mu$-a.e.; $\nu \ll \mu$ implies $1-f>0 \nu$-a.e. (think, why), therefore $\nu=\frac{f}{1-f} \cdot \mu$.

- From now on, in addition, $\nu \leq \mu$.

We need f such that $\nu(A)=(f \cdot \mu)(A)=\int f \mathbb{1}_{A} \mathrm{~d} \mu=\left\langle f, \mathbb{1}_{A}\right\rangle_{\mu}$ for all $A \in S$; here the inner product is taken in $L_{2}(\mu)$. It is sufficient to find $f \in L_{2}(\mu)$ such that $\langle f, g\rangle_{\mu}=\int g \mathrm{~d} \nu$ for all $g \in L_{2}(\mu)$ (then surely $f \geq 0$). Taking into account that $\left|\int g \mathrm{~d} \nu\right|=\left|\langle g, \mathbb{1}\rangle_{\nu}\right| \leq\|g\|_{\nu}\|\mathbb{1}\|_{\nu}=\sqrt{\nu(X) \int g^{2} \mathrm{~d} \nu} \leq$ $\sqrt{\nu(X) \int g^{2} \mathrm{~d} \mu}=\sqrt{\nu(X)}\|g\|_{\mu}$ we see that the linear functional $\ell: L_{2}(\mu) \rightarrow$ \mathbb{R} defined by $\ell(g)=\int g \mathrm{~d} \nu$ is bounded. Thus, Th. 9 b 2 is reduced to the following well-known fact from the theory of Hilbert spaces.

9b6 Lemma. For every bounded linear functional ℓ on $L_{2}(\mu)$ there exists $f \in L_{2}(\mu)$ such that

$$
\forall g \in L_{2}(\mu) \ell(g)=\langle f, g\rangle
$$

Usually, $L_{2}(\mu)$ is separable, therefore has an orthonormal basis $\left(e_{n}\right)_{n}$, and we just take

$$
f=\sum_{n} \ell\left(e_{n}\right) e_{n}
$$

(it converges; think, why); then $\ell(g)=\langle f, g\rangle$ for $g=e_{n}$, therefore, for all g.
It is possible to generalize this argument to nonseparable spaces. Alternatively, a geometric proof is well-known. WLOG, the norm $\sup _{\|f\| \leq 1} \ell(f)$ of ℓ is 1 . For every $\varepsilon \in(0,1)$ and f such that $\ell(f) \geq 1-\varepsilon$ we have
(a) $|\ell(g)-\langle f, g\rangle| \leq \sqrt{2 \varepsilon}$ for all g of norm ≤ 1;
(b) $\|f-g\| \leq 2 \sqrt{2 \varepsilon-\varepsilon^{2}}$ for all g of norm ≤ 1 such that $\ell(g) \geq 1-\varepsilon$; just elementary geometry on the Euclidean plane containing f and g.

Thus, every sequence $\left(f_{n}\right)_{n}$ such that $\ell\left(f_{n}\right) \rightarrow 1$, being Cauchy sequence, converges to some f, and $\forall g \in L_{2}(\mu) \quad \ell(g)=\langle f, g\rangle$.

Theorem 9 b 2 is thus proved.
9b7 Remark. Let (X, S) and (Y, T) be measurable spaces, and $\varphi: X \rightarrow$ Y measurable map. If measures μ_{1}, ν_{1} on (X, S) satisfy $\nu_{1} \ll \mu_{1}$, then pushforward measures $\mu_{2}=\varphi_{*} \mu_{1}, \nu_{2}=\varphi_{*} \nu_{1}$ satisfy $\nu_{2} \ll \mu_{2}$ (think, why). Therefore, every measure of the form $\varphi_{*}(f \cdot \mu)$ is also of the form $g \cdot \varphi_{*} \mu$.

9b8 Definition. Two measures μ, ν on a measure space (X, S) are mutually singular (in symbols, $\mu \perp \nu$) if there exists $A \in S$ such that $\mu(A)=0$ and $\nu(X \backslash A)=0$.

See 3d5 for a nonatomic measure on $[0,1]$ that is singular to Lebesgue measure.

9b9 Exercise. Two σ-finite measures μ, ν on (X, S) are mutually singular if and only if $\frac{\mathrm{d} \mu}{\mathrm{d}(\mu+\nu)} \in\{0,1\}$ a.e.

Prove it.
9b10 Theorem (Lebesgue's decomposition theorem). Let (X, S, μ) be a σ-finite measure space, and ν a σ-finite measure on (X, S). Then ν can be expressed uniquely as a sum of two measures, $\nu=\nu_{\mathrm{a}}+\nu_{\mathrm{s}}$, where $\nu_{\mathrm{a}} \ll \mu$ and $\nu_{\mathrm{s}} \perp \mu$.

9b11 Exercise. Prove Theorem 9b10. ${ }^{1}$

9c Conditioning

9c1 Definition. Given a probability space (Ω, \mathcal{F}, P), a measurable space (E, S) and a measurable map $\varphi: \Omega \rightarrow E$ from (Ω, \mathcal{F}) to (E, S), we define the conditional expectation $\mathbb{E}(X \mid \varphi)$ of an integrable $X: \Omega \rightarrow \mathbb{R}$
(a) for $X: \Omega \rightarrow[0, \infty)$, as a measurable $g: E \rightarrow[0, \infty)$ such that $\varphi_{*}(X \cdot P)=g \cdot \varphi_{*} P ;$
(b) in general, by $\mathbb{E}(X \mid \varphi)=\mathbb{E}\left(X_{+} \mid \varphi\right)-\mathbb{E}\left(X_{-} \mid \varphi\right)$.
$\mathbf{9 c} \mathbf{2}$ Remark. Existence of $\mathbb{E}(X \mid \varphi)$ is ensured by $9 \mathrm{b7} 7$, uniqueness (up to equivalence) by 9 b 5 . The equivalence class of $\mathbb{E}(X \mid \varphi)$ is uniquely determined by the equivalence class of X.

9c3 Exercise. The conditional expectation is a linear operator from $L_{1}(P)$ to $L_{1}\left(\varphi_{*} P\right)$, and $\|\mathbb{E}(X \mid \varphi)\| \leq\|X\|$, and $\mathbb{E}_{1}(\mathbb{E}(X \mid \varphi))=\mathbb{E} X$ (where \mathbb{E}_{1} is the integral w.r.t. $\left.\varphi_{*} P\right)$.

Prove it. ${ }^{2}$

[^2]Some convenient notation:
(9c4) $\mathbb{P}(A \mid \varphi)=\mathbb{E}\left(\mathbb{1}_{A} \mid \varphi\right) \quad$ for $A \in \mathcal{F} \quad$ ("conditional probability");

$$
\begin{equation*}
\mathbb{E}(X \mid \varphi=b)=\mathbb{E}(X \mid \varphi)(b) \quad \text { for } b \in E \tag{9c5}
\end{equation*}
$$

By $4 \mathrm{c} 21, \varphi_{*}((f \circ \varphi) \cdot P)=f \cdot \varphi_{*} P$; applying this to f_{+}, f_{-}we get for a $\varphi_{*} P$-integrable f

$$
\begin{equation*}
\mathbb{E}(f \circ \varphi \mid \varphi)=f \tag{9c6}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\mathbb{E}(f(\varphi) \mid \varphi=b)=f(b) \tag{9c7}
\end{equation*}
$$

Moreover, assuming integrability of $X, f \circ \varphi$ and $(f \circ \varphi) X$,

$$
\begin{equation*}
\mathbb{E}((f \circ \varphi) X \mid \varphi)=f \mathbb{E}(X \mid \varphi) \tag{9c8}
\end{equation*}
$$

since for $X \geq 0, f \geq 0$ (otherwise, take $f_{+}, f_{-}, X_{+}, X_{-}$)

$$
\begin{aligned}
& \varphi_{*}((f \circ \varphi) X \cdot P)=\varphi_{*}((f \circ \varphi) \cdot(X \cdot P))=f \cdot \varphi_{*}(X \cdot P)= \\
&=f \cdot\left(\mathbb{E}(X \mid \varphi) \cdot \varphi_{*} P\right)=(f \mathbb{E}(X \mid \varphi)) \cdot \varphi_{*} P
\end{aligned}
$$

That is,

$$
\begin{equation*}
\mathbb{E}(f(\varphi) X \mid \varphi=b)=f(b) \mathbb{E}(X \mid \varphi=b) \tag{9c9}
\end{equation*}
$$

("taking out what is known", or "pulling out known factors").
The equality $\varphi_{*}(X \cdot P)=g \cdot \varphi_{*} P$ may be rewritten as

$$
\begin{equation*}
\int_{\varphi^{-1}(B)} X \mathrm{~d} P=\int_{B} g \mathrm{~d} \varphi_{*} P \quad \text { for all } B \in S \tag{9c10}
\end{equation*}
$$

or, using (4c22), as

$$
\begin{equation*}
\int_{\varphi^{-1}(B)} X \mathrm{~d} P=\int_{\varphi^{-1}(B)} g \circ \varphi \mathrm{~d} P \quad \text { for all } B \in S \tag{9c11}
\end{equation*}
$$

Introducing the σ-algebra \mathcal{F}_{φ} ("generated by φ ") by

$$
\mathcal{F}_{\varphi}=\left\{\varphi^{-1}(B): B \in S\right\},
$$

we rewrite (9c11) as $\int_{A} X \mathrm{~d} P=\int_{A} g \circ \varphi \mathrm{~d} P$ for all $A \in \mathcal{F}_{\varphi}$, that is, $\left.(X \cdot P)\right|_{\mathcal{F}_{\varphi}}=$ $\left.((g \circ \varphi) \cdot P)\right|_{\mathcal{F}_{\varphi}} ;$ also, $g \circ \varphi$ is measurable on $\left(\Omega, \mathcal{F}_{\varphi}\right)$.

Thus, we may forget φ, consider instead a sub- σ-algebra $\mathcal{F}_{1} \subset \mathcal{F}$, and define $\mathbb{E}\left(X \mid \mathcal{F}_{1}\right)$ as an integrable function on $\left(\Omega, \mathcal{F}_{1}, P_{\mathcal{F}_{1}}\right)$ such that ${ }^{1}$

$$
\left.(X \cdot P)\right|_{\mathcal{F}_{1}}=\left.\mathbb{E}\left(X \mid \mathcal{F}_{1}\right) \cdot P\right|_{\mathcal{F}_{1}} \quad \text { for } X \geq 0
$$

and in general,

$$
\int_{A} X \mathrm{~d} P=\int_{A} \mathbb{E}\left(X \mid \mathcal{F}_{1}\right) \mathrm{d} P \quad \text { for all } A \in \mathcal{F}_{1}
$$

that is,

$$
\mathbb{E}\left(X \mathbb{1}_{A}\right)=\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{1}\right) \mathbb{1}_{A}\right) \quad \text { for all } A \in \mathcal{F}_{1} .
$$

This approach may seem to be more general, but in fact, it is not. Given $\mathcal{F}_{1} \subset \mathcal{F}$, we may take $(E, S)=\left(\Omega, \mathcal{F}_{1}\right)$ and $\varphi=\mathrm{id}$. Thus, all formulas written in terms of $\mathbb{E}(\cdot \mid \varphi)$ may be rewritten (and still hold!) in terms of $\mathbb{E}\left(\cdot \mid \mathcal{F}_{1}\right)$. In particular, (9c6)-9c9) turn into

$$
\begin{align*}
& \mathbb{E}\left(f \mid \mathcal{F}_{1}\right)=f \text { for } \mathcal{F}_{1} \text {-measurable, integrable } f ; \tag{9c12}\\
& \mathbb{E}\left(f X \mid \mathcal{F}_{1}\right)=f \mathbb{E}\left(X \mid \mathcal{F}_{1}\right) \text { for } \mathcal{F}_{1} \text {-measurable } f \tag{9c13}
\end{align*}
$$

(integrability of f, X and $f X$ is assumed, integrability of $f \mathbb{E}\left(X \mid \mathcal{F}_{1}\right)$ follows).

Also, by 9c3, the conditional expectation is a linear operator $L_{1}(\Omega, \mathcal{F}, P) \rightarrow$ $L_{1}\left(\Omega, \mathcal{F}_{1},\left.P\right|_{\mathcal{F}_{1}}\right) \subset L_{1}(\Omega, \mathcal{F}, P)$, and

$$
\begin{gather*}
\left\|\mathbb{E}\left(X \mid \mathcal{F}_{1}\right)\right\|_{1} \leq\|X\|_{1}, \tag{9c14}\\
\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{1}\right)\right)=\mathbb{E} X \tag{9c15}
\end{gather*}
$$

("law of total ${ }^{2}$ expectation").
By $5 \mathrm{f} 4, L_{2}(P) \subset L_{1}(P)$. Let us consider $Y=\mathbb{E}\left(X \mid \mathcal{F}_{1}\right)$ for $X \in L_{2}(P)$. For every \mathcal{F}_{1}-measurable $Z \in L_{2}(P)$ we know that $X Z$ is integrable, and (9c13) gives $\mathbb{E}\left(Z X \mid \mathcal{F}_{1}\right)=Z \mathbb{E}\left(X \mid \mathcal{F}_{1}\right)=Z Y$. Using 9c14), $\|Z Y\|_{1} \leq$ $\|Z X\|_{1} \leq\|Z\|_{2}\|X\|_{2}$, which implies $\|Y\|_{2} \leq\|X\|_{2}$ (take $Z_{n} \rightarrow Y,\left|Z_{n}\right| \leq$ $|Y|)$, thus, $Y \in L_{2}$. Using (9c15), $\mathbb{E}(Z X)=\mathbb{E}(Z Y)$, that is, $\langle Z, X\rangle=$ $\langle Z, Y\rangle$. We see that $X-Y$ is orthogonal to the subspace $L_{2}\left(\Omega, \mathcal{F}_{1},\left.P\right|_{\mathcal{F}_{1}}\right)$ of $L_{2}(\Omega, \mathcal{F}, P)$, and Y belongs to this subspace, which shows that
(9c16) $\quad \mathbb{E}\left(X \mid \mathcal{F}_{1}\right)$ is the orthogonal projection of X to $L_{2}\left(\Omega, \mathcal{F}_{1},\left.P\right|_{\mathcal{F}_{1}}\right)$
(in other words, the best approximation...), whenever $X \in L_{2}(P)$. Taking into account that $L_{2}(P)$ is dense in $L_{1}(P)$ we may say that the conditional expectation is the orthogonal projection extended by continuity to $L_{1}(P) .{ }^{3}$

[^3]9c17 Exercise. (a) Let $b \in E$ be an atom of $\varphi_{*} P$, that is, $\{b\} \in S$ and $P\left(\varphi^{-1}(b)\right)>0$. Then

$$
\mathbb{P}(A \mid \varphi=b)=\frac{P\left(A \cap \varphi^{-1}(b)\right)}{P\left(\varphi^{-1}(b)\right)}
$$

(b) Let B be an atom of $\left.P\right|_{\mathcal{F}_{1}}$, that is, $B \in \mathcal{F}_{1}, P(B)>0$, and

$$
\forall C \in \mathcal{F}_{1} \quad(C \subset B \quad \Longrightarrow \quad P(C) \in\{0, P(B)\}) .
$$

Then

$$
\mathbb{P}\left(A \mid \mathcal{F}_{1}\right)=\frac{P(A \cap B)}{P(B)} \text { on } B .
$$

Prove it.
We see that an atom leads to a conditional measure,

$$
P_{b}: A \mapsto \frac{P\left(A \cap \varphi^{-1}(b)\right)}{P\left(\varphi^{-1}(b)\right)}, \quad \text { or } \quad P_{B}: A \mapsto \frac{P(A \cap B)}{P(B)},
$$

a probability measure concentrated on $\varphi^{-1}(b)$, or B; and in this case, the conditional expectation is the integral w.r.t. the conditional measure,

$$
\mathbb{E}(X \mid \varphi=b)=\int X \mathrm{~d} P_{b}, \quad \text { or } \quad \mathbb{E}\left(X \mid \mathcal{F}_{1}\right)=\int X \mathrm{~d} P_{B} \text { on } B
$$

(check it). Also, an atom is "self-sufficient": in order to know its conditional measure we need to know only B (or $\left.\varphi^{-1}(b)\right)$ rather than the whole \mathcal{F}_{1} (or $\varphi)$.

In the general theory, existence of conditional measures is problematic. ${ }^{1}$ But in specific (non-pathological) examples it usually exists and may be calculated (more or less) explicitly.

9c18 Example. The special case treated in Sect. 6d: $(\Omega, \mathcal{F}, P)=\left(\Omega_{1}, \mathcal{F}_{1}, P_{1}\right) \times$ $\left(\Omega_{2}, \mathcal{F}_{2}, P_{2}\right)$ and $\varphi\left(\omega_{1}, \omega_{2}\right)=\omega_{1}$. The conditional measure $P_{\omega_{1}}$ is the image of P_{2} under the embedding $\omega_{2} \mapsto\left(\omega_{1}, \omega_{2}\right)$.

9c19 Example. Let Ω be the unit disk $\left\{(x, y): x^{2}+y^{2}<1\right\}$ on \mathbb{R}^{2}, with the Lebesgue σ-algebra \mathcal{F} and the uniform distribution P (with the constant density $1 / \pi)$; and let $\varphi(x, y)$ be the polar angle,

$$
\begin{gathered}
x=r \cos \theta \\
y=r \sin \theta
\end{gathered} \quad \text { where } \quad r=\sqrt{x^{2}+y^{2}} .
$$

[^4](We neglect the origin.)
We have a homeomorphism (moreover, diffeomorphism) between two open sets in \mathbb{R}^{2} :
$$
\alpha:(0,1) \times(-\pi, \pi) \rightarrow \Omega \backslash((-1,0] \times\{0\}) . \quad \alpha(r, \theta)=(x, y) .
$$

Using elementary geometry,

$$
P\left(\alpha\left((0, r) \times\left(\theta_{1}, \theta_{2}\right)\right)\right)=\frac{1}{\pi} \frac{\theta_{2}-\theta_{1}}{2} r^{2}=\left(\int_{\theta_{1}}^{\theta_{2}} \frac{\mathrm{~d} \theta}{2 \pi}\right)\left(\int_{0}^{r} 2 \rho \mathrm{~d} \rho\right)
$$

for $-\pi \leq \theta_{1} \leq \theta_{2} \leq \pi$ and $0 \leq r \leq 1$, which means that P is the image of the product measure $\frac{\mathrm{d} \theta}{2 \pi} 2 r \mathrm{~d} r$ on $(0,1) \times(-\pi, \pi)$. (Indeed, the latter measure coincides with $\left(\alpha^{-1}\right)_{*} P$ on the algebra generated by boxes. $)^{1}$

Neglecting the null set $(-1,0] \times\{0\} \subset \Omega$ we see that conditioning on the map $\varphi: \Omega \rightarrow(-\pi, \pi), \varphi(x, y)=\theta$, is equivalent ${ }^{2}$ to conditioning on the projection $(0,1) \times(-\pi, \pi) \rightarrow(-\pi, \pi),(r, \theta) \mapsto \theta$. Treated as random variables, r and θ are independent, and the distribution of r has the density $2 r$; the same is the conditional distribution of r given θ. Thus,

$$
\begin{gathered}
\mathbb{E}(X \mid \varphi=\theta)=\int_{0}^{1} X(r \cos \theta, r \sin \theta) 2 r \mathrm{~d} r \\
\mathbb{E}\left(X \mid \mathcal{F}_{\varphi}\right)(x, y)=\int_{0}^{1} X\left(\frac{r x}{\sqrt{x^{2}+y^{2}}}, \frac{r y}{\sqrt{x^{2}+y^{2}}}\right) 2 r \mathrm{~d} r .
\end{gathered}
$$

9c20 Example. Still, the same Ω (the disk), \mathcal{F} and P, but now let φ be the projection $(x, y) \mapsto x$ from Ω to $(-1,1)$.

Treating P as a measure on \mathbb{R}^{2} we see that it is not a product measure (think, why), but it has a density $\frac{1}{\pi} \mathbb{1}_{\Omega}$ w.r.t. the product measure $m_{2}=$ $m_{1} \times m_{1}$. Thus,

$$
\int X \mathrm{~d} P=\int \mathrm{d} x \int \mathrm{~d} y X(x, y) \frac{1}{\pi} \mathbb{1}_{\Omega}(x, y) ;
$$

for $X \geq 0$ we see that $\varphi_{*}(X \cdot P)$ has the density $x \mapsto \int X(x, y) \frac{1}{\pi} \mathbb{1}_{\Omega}(x, y) \mathrm{d} y$ w.r.t. m_{1}. In particular, taking $X=1$ we see that $\varphi_{*}(P)$ has the density

[^5]$x \mapsto \int \frac{1}{\pi} \mathbb{1}_{\Omega}(x, y) \mathrm{d} y=\frac{2}{\pi} \sqrt{1-x^{2}}$ (and 0 if $x^{2}>1$) w.r.t. m_{1}. Thus, $\varphi_{*}(X \cdot P)$ has the density ${ }^{1}$
$$
\frac{\pi}{2 \sqrt{1-x^{2}}} \int X(x, y) \frac{1}{\pi} \mathbb{1}_{\Omega}(x, y) \mathrm{d} y=\frac{1}{2 \sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}}}^{+\sqrt{1-x^{2}}} X(x, y) \mathrm{d} y
$$
w.r.t. $\varphi_{*}(P)$. It means that
$$
\mathbb{E}(X \mid \varphi=x)=\frac{1}{2 \sqrt{1-x^{2}}} \int_{-\sqrt{1-x^{2}}}^{+\sqrt{1-x^{2}}} X(x, y) \mathrm{d} y \quad \text { for }-1<x<1
$$
(just the mean value on the section) for $X \geq 0$, and therefore for arbitrary X.

We observe another manifestation of the Borel-Kolmogorov paradox: by 9c19, the conditional density of y given $\theta=\pi / 2$ is proportional to y, while by 9c20, the conditional density of y given $x=0$ is constant.

As noted after 9c17, a condition of positive probability is self-sufficient. Now we see that a condition of zero probability is not. Being unable to divide by zero, we need a limiting procedure, involving a neighborhood of the given condition.

9c21 Exercise. Let $(\Omega, \mathcal{F}, Q)=\left(\Omega_{1}, \mathcal{F}_{1}, Q_{1}\right) \times\left(\Omega_{2}, \mathcal{F}_{2}, Q_{2}\right)$ (probability spaces), $P \ll Q$ another probability measure on (Ω, \mathcal{F}), and $\varphi: \Omega \rightarrow \Omega_{1}$ the projection $\varphi\left(\omega_{1}, \omega_{2}\right)=\omega_{1}$. Then, on (Ω, \mathcal{F}, P), the conditioning is

$$
\mathbb{E}\left(X \mid \varphi=\omega_{1}\right)=\int_{\Omega_{2}} \frac{f\left(\omega_{1}, \cdot\right)}{f_{1}\left(\omega_{1}\right)} X\left(\omega_{1}, \cdot\right) \mathrm{d} Q_{2}
$$

where $f=\frac{\mathrm{d} P}{\mathrm{~d} Q}$ and $f_{1}\left(\omega_{1}\right)=\int_{\Omega_{2}} f\left(\omega_{1}, \cdot\right) \mathrm{d} Q_{2}$.
Formulate it accurately, and prove. ${ }^{2}$
In this case we have conditional measures, and moreover, conditional densities (w.r.t. Q_{2}, not w.r.t. $Q_{1} \times Q_{2}$).

[^6]9c22 Exercise. Let $\left(\Omega_{1}, \mathcal{F}_{1}, P_{1}\right)$ and $\left(\Omega_{2}, \mathcal{F}_{2}, P_{2}\right)$ be probability spaces, α : $\Omega_{1} \rightarrow \Omega_{2}$ a measure preserving map, (E, S) a measurable space, and φ : $\Omega_{2} \rightarrow E$ a measurable map from $\left(\Omega_{2}, \mathcal{F}_{2}\right)$ to (E, S). Then

$$
\mathbb{E}(X \circ \alpha \mid \varphi \circ \alpha)=\mathbb{E}(X \mid \varphi)
$$

for all $X \in L_{1}\left(P_{2}\right)$.
Prove it.
9c23 Exercise. Let the joint distribution $P_{X, Y}$ of two random variables X, Y be absolutely continuous (w.r.t. the two-dimensional Lebesgue measure m_{2}). Then

$$
\mathbb{E}(Y \mid X=x)=\int y p_{Y \mid X=x}(y) \mathrm{d} y
$$

where

$$
p_{Y \mid X=x}(y)=\frac{p_{X, Y}(x, y)}{p_{X}(x)}, \quad p_{X}(x)=\int p_{X, Y}(x, y) \mathrm{d} y, \quad p_{X, Y}=\frac{\mathrm{d} P_{X, Y}}{\mathrm{~d} m_{2}} .
$$

Formulate it accurately, and prove. ${ }^{1}$
Back to the "great circle puzzle" of Sect. 9a. Suppose that a random point is distributed uniformly on the sphere. What is the conditional distribution on a given great circle?

This question cannot be answered without asking first, how is this great circle obtained from the random point. ${ }^{2}$

One case: there is a special (nonrandom) point ("the North Pole"), and we are given the great circle through the North Pole and the random point. Then the conditional density is $\frac{1}{2} \sin \theta$, where θ is the angle to the North Pole.

Another case: the given great circle is chosen at random among all great circles containing the random point. Equivalently: the "North Pole" is chosen at random, uniformly, independently of the random point. Then the conditional density is constant, $\frac{1}{2 \pi} .^{3}$

Having conditional measures, it is tempting to define conditional expectation of X as the integral w.r.t. the conditional measure, requiring just integrability of X w.r.t. almost all conditional measures (which is necessary and

[^7]not sufficient for unconditional integrability, since the conditional expectation of $|X|$ need not be integrable). Then, however, strange things happen. For example, it may be that $\mathbb{E}\left(X \mid \mathcal{F}_{1}\right)>0$ a.s., but $\mathbb{E}\left(X \mid \mathcal{F}_{2}\right)<0$ a.s. An example (sketch): $\mathbb{P}(X=n, Y=n+1)=\mathbb{P}(X=n+1, Y=n)=0.5 p^{n}(1-p)$ for $n=0,1,2, \ldots ;$ then $\mathbb{E}\left(a^{Y} \mid X=x\right)=\frac{p a+a^{-1}}{1+p} a^{x}$ for $x=1,2, \ldots$; we take $a p>1$ and get $\mathbb{E}\left(a^{Y} \mid X\right)>a^{X}$ a.s., but also $\mathbb{E}\left(a^{X} \mid Y\right)>a^{Y}$ a.s. ${ }^{1}$ Would you prefer to gain a^{X} or a^{Y} in a game?

9d More on absolute continuity

9d1 Proposition. Let (X, S, μ) be a measure space, and ν a finite measure on (X, S). Then

$$
\nu \ll \mu \quad \Longleftrightarrow \quad \forall \varepsilon>0 \exists \delta>0 \forall A \in S \quad(\mu(A)<\delta \quad \Longrightarrow \quad \nu(A)<\varepsilon) .
$$

Proof." "" is easy: $\mu(A)=0$ implies $\forall \varepsilon \nu(A)<\varepsilon$.
" \Longrightarrow ": Otherwise we have ε and $A_{n} \in S$ such that $\mu\left(A_{n}\right) \rightarrow 0$ but $\nu\left(A_{n}\right) \geq \varepsilon$. WLOG, $\sum_{n} \mu\left(A_{n}\right)<\infty$. Taking $B_{n}=A_{n} \cup A_{n+1} \cup \ldots$ we have $\mu\left(B_{n}\right) \rightarrow 0, \nu\left(B_{n}\right) \geq \varepsilon$, and $B_{n} \downarrow B$ for some B. Thus, $\mu(B)=0$, but $\nu(B) \geq \varepsilon$ (due to finiteness of ν), in contradiction to $\nu \ll \mu$.
9 d 2 Proposition. Let (X, S, μ) be a measure space, $\mathcal{E} \subset S$ a generating algebra of sets, μ be \mathcal{E} - σ-finite, ${ }^{2}$ and ν a finite measure on (X, S). Then

$$
\nu \ll \mu \quad \Longleftrightarrow \quad \forall \varepsilon>0 \exists \delta>0 \forall E \in \mathcal{E} \quad(\mu(E)<\delta \quad \Longrightarrow \quad \nu(E)<\varepsilon)
$$

Proof. " \Longrightarrow " follows easily from 9d1 (since $\mathcal{E} \subset S$).
" ": By 9 d 1 it is sufficient to prove that $\mu(A)<\frac{1}{2} \delta \Longrightarrow \nu(A)<2 \varepsilon$. Given $A \in S$ such that $\mu(A)<\frac{1}{2} \delta, 7 \mathrm{~b} 4$ applies to $\mu+\nu$ (think, why) giving $E \in \mathcal{E}$ such that $(\mu+\nu)(E \triangle A)<\min \left(\frac{1}{2} \delta, \varepsilon\right)$. Then $\mu(E) \leq \mu(A)+$ $\mu(E \triangle A)<\frac{1}{2} \delta+\frac{1}{2} \delta=\delta$, whence $\nu(E)<\varepsilon$ and $\nu(A) \leq \nu(E)+\nu(E \triangle A)<$ $\varepsilon+\varepsilon=2 \varepsilon$.

In particular, we may take (X, S, μ) to be $\mathbb{R}\left(\right.$ or $\left.\mathbb{R}^{d}\right)$ with Lebesgue measure (or arbitrary locally finite measure), and \mathcal{E} the algebra generated by intervals (or boxes).
9d3 Definition. A continuous function $F:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous, if for every $\varepsilon>0$ there exists $\delta>0$ such that for every n and disjoint intervals $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right) \subset[a, b]$,

$$
\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)<\delta \Longrightarrow \sum_{k=1}^{n}\left|F\left(b_{k}\right)-F\left(a_{k}\right)\right|<\varepsilon
$$

[^8]9d4 Proposition. A finite nonatomic measure μ on \mathbb{R} is absolutely continuous (w.r.t. Lebesgue measure) if and only if the function

$$
F_{\mu}: x \mapsto \mu((-\infty, x])
$$

is absolutely continuous on every $[a, b]$.
9d5 Exercise. Prove Prop. 9d4.
9d6 Corollary. An increasing continuous function F on $[a, b]$ is absolutely continuous if and only if there exists $f \in L_{1}[a, b]$ such that $F(x)=\int_{a}^{x} f \mathrm{~d} m$ for all $x \in[a, b]$.

Taking $F=F_{\mu}$ for μ of 3d5 we get a continuous but not absolutely continuous increasing function on $[0,1] .{ }^{1}$

Index

absolutely continuous
function, 104
measure, 94
conditional
density, 101
expectation, 96
measure, 99,101
probability, 97
Lebesgue's decomposition theorem, 96

Radon-Nikodym theorem, 94
singular measure, 96
$\mathbb{E}\left(X \mid \mathcal{F}_{1}\right), 98$
$\mathbb{E}(X \mid \varphi=b), 97$
$\mathbb{E}(X \mid \varphi), 96$
$\mathcal{F}_{\varphi}, 97$
$\nu \ll \mu, 94$
$\mathbb{P}(A \mid \varphi), 97$

[^9]
[^0]: ${ }^{1}$ Picture from Wikipedia
 ${ }^{2}$ See also Footnote 1 on page 100.

[^1]: 1 "Many quite futile arguments have raged between otherwise competent probabilists over which of these results is 'correct'." E.T. Jaynes (quote from Wikipedia).

[^2]: ${ }^{1}$ Hint: consider $\frac{\mathrm{d} \mu}{\mathrm{d}(\mu+\nu)}$.
 ${ }^{2}$ Recall the proof of 4 d 2 .

[^3]: ${ }^{1}$ For a \mathcal{F}_{1}-measurable f we have $\int f \mathrm{~d} P=\int f \mathrm{~d}\left(\left.P\right|_{\mathcal{F}_{1}}\right)$, as was noted before 4 c 24 .
 ${ }^{2}$ Or "iterated".
 ${ }^{3}$ The continuity in L_{1} metric does not follow just from continuity in L_{2} metric; specific properties of this operator are used.

[^4]: ${ }^{1}$ It holds for standard probability spaces, and may fails otherwise.

[^5]: ${ }^{1}$ By the way, this is a special case of a well-known change of variable theorem from Analysis-3: if $U, V \subset \mathbb{R}^{d}$ are open sets and $\varphi: U \rightarrow V$ a diffeomorphism, then $\int_{U}(f \circ \varphi)|\operatorname{det} D \varphi| \mathrm{d} m=\int_{V} f \mathrm{~d} m$ for every compactly supported continuous function f on V. A limiting procedure gives $\int_{B}|\operatorname{det} D \varphi| \mathrm{d} m=m(\varphi(B))$ for every box B such that $\bar{B} \subset U$. It follows that $\left(\varphi^{-1}\right)_{*} m=|\operatorname{det} D \varphi| \cdot m$ on every B, and therefore, on the whole U.
 ${ }^{2}$ See also 9 c 22

[^6]: ${ }^{1}$ Indeed, if $\nu=f \cdot \mu, 0<f<\infty$, and $\xi=g \cdot \mu$, then $\mu=\frac{1}{f} \cdot \nu$ and so $\xi=g \cdot\left(\frac{1}{f} \cdot \nu\right)=\frac{g}{f} \cdot \nu$.
 ${ }^{2}$ Hint: similar to 9 c 20 what about $f_{1}\left(\omega_{1}\right)=0$?

[^7]: ${ }^{1}$ Hint: 9 c 21 , 9 c 22
 2 "... the term 'great circle' is ambiguous until we specify what limiting operation is to produce it. The intuitive symmetry argument presupposes the equatorial limit; yet one eating slices of an orange might presuppose the other." E.T. Jaynes (quote from Wikipedia).
 ${ }^{3}$ The proof involves the invariant measure on the group of rotations ("Haar measure").

[^8]: ${ }^{1}$ Recall 1b1: $-\frac{1}{2}=\frac{1}{2}-1+1-1+\cdots=+\frac{1}{2}$.
 ${ }^{2}$ As defined before 7 b 4 .

[^9]: ${ }^{1}$ Known as "Cantor function", "Cantor ternary function", "Lebesgue's singular function", "the Cantor-Vitali function", "the Cantor staircase function" and even "the Devil's staircase", see Wikipedia.

