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9a Borel-Kolmogorov paradox

Spherical coordinates on R may be treated as a map a : (r,0,¢) — (z,y, 2)
where!

x = rsinf cosp,
(9al) y = rsinfsin p,

z =rcost,

this is a homeomorphism (moreover, diffeomorphism) between two open sets
in R3:

(0,00) x (0,7) x (=m,m) = R*\ ((—o0,0] x {0} x R) .

It does not preserve Lebesgue measure m; rather, m is the image of the
measure?

((r,0,¢) — r*sinf) -m.
Less formally, one writes
drdydz = r?sinfdrdf dp = (r*dr)(sin 6 dd)(dy) ,
a product measure. And the uniform distribution on the ball 22 +y?+2? < 1
turns into the product of three probability measures

;dx dydz = (3r* dr)(3 sin 6 d6) (3= dy)
7r

'Picture from [Wikipedia.
2See also Footnote 1 on page 100.


http://en.wikipedia.org/wiki/Spherical_coordinate_system
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on (0,1) x (0,7) x (—m,m).

According to Sect. 6d, the conditional distribution on the sphere z? +
y? 4+ 22 = 1 (that is, » = 1) is given by (3sinf#df)(5-dy). Further, the
conditional distribution on the circle 2% + y* = 1, z = 0 (that is, r = 1,
0 = %, the equator) is given by %dgp. And the conditional distribution on
the half-circle 22 + 22 = 1, y = 0, * > 0 (that is, r = 1, ¢ = 0, a line of
longitude) is given by 3 sin 6 df.

Quite strange: the result is not invariant under rotations of R3; why?!

9b Radon-Nikodym theorem

9b1l Definition. Let (X, S, u) be a measure space. A measure v on (X, 5)
is absolutely continuous (w.r.t. ), in symbols v < p, if

VAeS (u(A)=0 = v(4)=0).

If v = f- p for some measurable f : X — [0,00], then v < p (recall
Sect. 4c¢). If p is o-finite and v = f - p for some measurable f: X — [0, 00),
then v is o-finite (by 4c10(b)) and v < p. Here is the converse.

9b2 Theorem (Radon-Nikodym). Let (X, S, ;1) be a o-finite measure space,
and v an absolutely continuous (w.r.t. u) o-finite measure on (X, S). Then
v = f - p for some measurable f: X — [0,00).

9b3 Remark. If v is not o-finite, then still v = f - u, but f: X — [0, 00].
This claim fails badly without o-finiteness of p.

9b4 Exercise. Let (X, .S) be [0, 1] with Borel o-algebra, and v the Lebesgue
measure on it. Prove that v is not of the form f - p, if

(a) p is the counting measure;

(b) p =00 v.

9b5 Remark. Uniqueness of f (up to equivalence) is ensured by 7a4.

Proof of Th.[9b2 and Remark [9b3. WLOG, n(X) < co. Indeed, a o-finite p
is equivalent to some finite measure p; (by 5b8), and v € p <= v < 1y
(since p and gy have the same null sets, as noted before 5b7); also, v =
fm = v= C:i%-,u(byélbﬂ.

e From now on, p is finite.

L“Many quite futile arguments have raged between otherwise competent probabilists
over which of these results is ’correct’.” E.T. Jaynes (quote from Wikipedia)).


http://en.wikipedia.org/wiki/Borel–Kolmogorov_paradox
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If v is not o-finite, we take A,, € S such that v(A,) < oo and u(4,) —
SUD, (4)<oo 1(A); We introduce A, = U,A,,. Clearly, v is o-finite on A.; and
v=o00-pon X\ Ay (think, why). Thus, implies that v = f - u for some
measurable f: X — [0, 00].

Given a o-finite v, we may assume WLOG that v is finite (similarly to
1.

e From now on, also v is finite.

Ifv=f-(u+v)for some f, then (1—f)-v=f-p,and 1 — f >0 p-a.e.;
v < pimplies 1 — f > 0 v-a.e. (think, why), therefore v = % - L.

e From now on, in addition, v < pu.

We need f such that v(A) = (f - p)(A) = [ fladp = (f,1a), for all
A € S; here the inner product is taken in Lo(u). It is sufficient to find
[ € Lo(p) such that (f,g), = [gdv for all g € Ly(p) (then surely f > 0).

Taking into account that | [ gdv| = [(g, 1),| < ||lgll.|11]l, = \/v(X) [ ¢*dv <

X) [¢g*dp = \/ X)|lgll, we see that the linear functional ¢ : Ly(p) —

R deﬁned by ¢(g f gdv is bounded. Thus, Th. is reduced to the
following well- known fact from the theory of Hilbert spaces. O

9b6 Lemma. For every bounded linear functional ¢ on Lo(p) there exists
f € La(p) such that

Vg € Ly(p) £(g) = (f,9)-

Usually, Lo(p) is separable, therefore has an orthonormal basis (e, )., and

we just take
f= Zﬂ(en)e

(it converges; think, why); then ¢(g ) (f,g) for g = e,, therefore, for all g.

It is possible to generalize this argument to nonseparable spaces. Alter-
natively, a geometric proof is well-known. WLOG, the norm supy s<; £(f) of
¢is 1. For every € € (0,1) and f such that ¢(f) > 1 — ¢ we have

(a) |€(g) — (f,g)| < V/2¢ for all g of norm < 1;

(b) |If — gll <2v/2e—¢2 for all g of norm < 1 such that £(g) > 1 —¢;
just elementary geometry on the Euclidean plane containing f and g.

Thus, every sequence (f,), such that ¢(f,) — 1, being Cauchy sequence,
converges to some f, and Vg € Lo(u) 4(g) = (f, >
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Theorem is thus proved.

9b7 Remark. Let (X, S) and (Y,T") be measurable spaces, and ¢ : X —
Y measurable map. If measures py,1q on (X,S5) satisfy vy < pp, then
pushforward measures ps = p.pi1, V2 = .11 satisfy v < s (think, why).
Therefore, every measure of the form ¢, (f - ) is also of the form g - p.p.

9b8 Definition. Two measures y, v on a measure space (X, S) are mutually
singular (in symbols, p L v) if there exists A € S such that p(A) = 0 and
v(X '\ A)=0.

See 3d5 for a nonatomic measure on [0, 1] that is singular to Lebesgue
measure.

9b9 Exercise. Two o-finite measures u, v on (X, S) are mutually singular
if and only if % € {0,1} a.e.
Prove it.

9b10 Theorem (Lebesgue’s decomposition theorem). Let (X, S,u) be a
o-finite measure space, and v a o-finite measure on (X, S). Then v can be
expressed uniquely as a sum of two measures, v = v, + v, where v, < pu and
vs L p.

9b11 Exercise. Prove Theorem [9b10l!

9c Conditioning

9cl Definition. Given a probability space (£, F, P), a measurable space
(E,S) and a measurable map ¢ : Q — E from (Q,F) to (E,S), we define
the conditional expectation E (X } gp) of an integrable X : Q@ — R

(a) for X : Q@ — [0,00), as a measurable g : £ — [0,00) such that
(X - P)=g- . P;

(b) in general, by E(X |¢) =E (X} |¢) —E(X_|¢).

9c2 Remark. Existence of E (X ’ gp) is ensured by 9b7] uniqueness (up to
equivalence) by The equivalence class of IE(X ) is uniquely deter-
mined by the equivalence class of X.

9c3 Exercise. The conditional expectation is a linear operator from L;(P)
to L1 (. P), and [|E (X |¢)|| < |X||, and E(E (X |¢)) = EX (where E; is
the integral w.r.t. p.P).

Prove it.?

Hint: consider %.

2Recall the proof of 4d2.
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Some convenient notation:

(9c4) ]P’(A|<p) =E (14 | p) for AeF (“conditional probability”);
(9¢5) E(X|e=0)=E(X|p)(b) forbeE.

By 4c21, go*((f o) - P) = f - p,P; applying this to f,, f_ we get for a
4 P-integrable f

(9c6) E(fople) =1,

that is,

(9¢7) E(f(e)|¢=1b) = f(b).
Moreover, assuming integrability of X, f o ¢ and (f o )X,
(9¢8) E((fop)X|p)=fE(X]|ep),

since for X > 0, f > 0 (otherwise, take fi, f_, X, X )

pi((fop)X - P)=p.((fop) (X -P))=f @ (X -P)=
=f-(E(X|¢) 9.P) = (fE(X]|p)) ¢.P.
That is,
(9¢9) E(f)X|o=1b)=fL)E(X]|p=0)

(“taking out what is known”, or “pulling out known factors”).
The equality ¢.(X - P) = g - ¢, P may be rewritten as

(9¢10) / XdP = / gde, P forall Be S
¢~1(B) B

or, using (4c22), as
(9c11) / XdP:/ gopdP forall Be€ S.
v~ 1(B) »~1(B)
Introducing the o-algebra F,, (“generated by ¢”) by

Fo={¢'(B): B€ S},

we rewrite (9cIl]) as [, X dP = [, gopdP forall A € F, thatis, (X-P)|r, =
((g o) - P)|;w; also, g o ¢ is measurable on (2, F,).
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Thus, we may forget ¢, consider instead a sub-o-algebra F; C F, and
define E (X | F1) as an integrable function on (£, Fy, Pr,) such that!

(X -P)lr, =E(X|F)-Plr, for X >0,

and in general,

/XdP:/]E(X]]-"l)dP for all A € Fi,
A A

that is,
E(X14) =E(E(X|F)14) forall Ae F.
This approach may seem to be more general, but in fact, it is not. Given

F1 C F, we may take (E,S) = (Q,F;) and ¢ = id. Thus, all formulas
wrltten in terms of IE( ‘90) may be rewritten (and still hold') in terms of

}]—"1 In particular, (§ . . turn into

(9c12) E (f!]-"l) = f for Fi-measurable, integrable f;
(9¢13) E(fX|F)=fE(X|F) for Fi-measurable f
(integrability of f, X and fX is assumed, integrability of f E(X ‘.7—"1) fol-

lows).
Also, by , the conditional expectation is a linear operator L1(Q2, F, P) —
L1(97F17P|.7'—1) - LI(Q7~Fa P)a and

(9c14) ||E(X}}‘1)||1 < IX]l1,
(9¢15) E(E(X|F))=EX

(“law of total® expectation”).

By 5f4, Ly(P) C Ly(P). Let us consider Y = E (X | ) for X € Ly(P).
For every Fj-measurable Z € Ly(P) we know that XZ is integrable, and
gives E(ZX|F,) = ZE(X|F) = ZY. Using (9c14), ||1ZY |,
1ZX] < ]2 X ], which implies [V, < X[ (take Z, — Y, |Z,|
Y]), thus, Y € L,. Using (9c1d), E(ZX) = E(ZY), that is, (Z, X)
(Z,Y). We see that X —Y is orthogonal to the subspace Ly(Q2, F1, P|r,) of
Ly(92, F, P), and Y belongs to this subspace, which shows that

9c16) E (X}]—"l) is the orthogonal projection of X to Ly(Q, Fi, P|x,)

(IRVARVAN

(

(in other words, the best approximation...), whenever X € Lo(P). Taking
into account that Ls(P) is dense in L;(P) we may say that the conditional
expectation is the orthogonal projection extended by continuity to L;(P).?

'For a Fi-measurable f we have [ fdP = [ fd(P|#), as was noted before 4¢24.

20r “iterated”.

3The continuity in L; metric does not follow just from continuity in Lo metric; specific
properties of this operator are used.
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9cl7 Exercise. (a) Let b € E be an atom of ¢,P, that is, {b} € S and
P(¢7'(b)) > 0. Then

P(ANy™'(b))
P(p=1(b))
(b) Let B be an atom of P|z, that is, B € F;, P(B) > 0, and

P(A‘gpzb) =

vCeF (CcB = P(C)e{0,P(B)}).

Then
P(ANB)

P(B) on B.

P(A|F) =
Prove it.

We see that an atom leads to a conditional measure,

PANe~'(b)
Plp=t(b))

a probability measure concentrated on ¢~1(b), or B; and in this case, the
conditional expectation is the integral w.r.t. the conditional measure,

P(AN B)
P(B)

P A , or Pg: A~

Eﬂﬂwzb}:/XdH, or Epﬂﬂ):/Xdﬂme

(check it). Also, an atom is “self-sufficient”: in order to know its conditional
measure we need to know only B (or ¢~ !(b)) rather than the whole F; (or
).

In the general theory, existence of conditional measures is problematic.’
But in specific (non-pathological) examples it usually exists and may be
calculated (more or less) explicitly.

9c18 Example. The special case treated in Sect. 6d: (2, F, P) = (Qy, F1, P1) X
(Qo, Fo, Py) and ¢(wy,ws) = wy. The conditional measure P, is the image
of P, under the embedding wy — (w1, ws).

9c19 Example. Let 2 be the unit disk {(z,y) : 2% + y* < 1} on R?, with
the Lebesgue o-algebra F and the uniform distribution P (with the constant
density 1/7); and let ¢(z,y) be the polar angle,

x =rcost r=/a?+y?

) where
y = rsind 0=p(z,y).

Tt holds for standard probability spaces, and may fails otherwise.
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(We neglect the origin.)
We have a homeomorphism (moreover, diffeomorphism) between two
open sets in R?:

a:(0,1) x (=m,m) = Q\ ((=1,0] x {0}). «(r,8) = (z,y).

Using elementary geometry,

Pla(0n) x 0.00) = 250 = (["2)(["2pa0)

for —m <6, <60, < 7r and 0 < r < 1, which means that P is the image of
the product measure 2 27 dr on (0,1) x (—m, 7). (Indeed, the latter measure
coincides with (a™1), P on the algebra generated by boxes.)!

Neglecting the null set (—1,0] x {0} C © we see that conditioning on
the map ¢ : Q — (—m,7), ¢(z,y) = 0, is equivalent?® to conditioning on
the projection (0,1) X (—m,7) — (—m,m), (r,0) — 6. Treated as random
variables, 7 and # are independent, and the distribution of r has the density
2r; the same is the conditional distribution of r given #. Thus,

1
E(X|g0:0) :/0 X (rcos,rsinf)2rdr;

E(X!f@)(x,y):/olX(\/xgin,\/ng:_yQ)Qrdr.

9c20 Example. Still, the same 2 (the disk), F and P, but now let ¢ be the
projection (z,y) — x from Q to (—1,1).

Treating P as a measure on R? we see that it is not a product measure
(think, why), but it has a density %]].Q w.r.t. the product measure my =

my X my. Thus,
1
/Xdp:/dx/dyX(x,y)—]ln(%y);
7

for X > 0 we see that ¢,(X - P) has the density z — [ X (z,y)i1o(z,y)dy
w.r.t. my. In particular, taking X = 1 we see that ¢.(P) has the density

!By the way, this is a special case of a well-known change of variable theorem
from Analysis-3: if U,V C R? are open sets and ¢ : U — V a diffeomorphism, then
fU o )| det Dp|dm = fv f dm for every compactly supported continuous function f on
V. A limiting procedure gives [, |det Do|dm = m(p(B)) for every box B such that
B C U. It follows that (¢~ !).m = |det Dy| - m on every B, and therefore, on the whole

U.
2See also
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z— [lg(x,y)dy = 2v/1 — 22 (and 0 if 22 > 1) w.r.t. my. Thus, ¢, (X - P)
has the density!

T 1 +v1— I2
" Xz o, y) dy = d

w.r.t. o,.(P). It means that

+V1-a?
E(X}gpzx):%/m/ X(z,y)dy for —1<z<1

(just the mean value on the section) for X > 0, and therefore for arbitrary
X.

We observe another manifestation of the Borel-Kolmogorov paradox: by
9c19| the conditional density of y given 6 = 7/2 is proportional to y, while
by [9¢20}, the conditional density of y given x = 0 is constant.

As noted after 0cI7], a condition of positive probability is self-sufficient. Now
we see that a condition of zero probability is not. Being unable to divide by
zero, we need a limiting procedure, involving a neighborhood of the given
condition.

9c21 Exercise. Let (Q,F,Q) = (1, F1,Q1) x (2, F2,Q2) (probability
spaces), P < @ another probability measure on (€, F), and ¢ : Q —
the projection ¢(wi,ws) = wy. Then, on (2, F, P), the conditioning is

f(wlv )
9, fi(wr)

where f = and fi(wr) fQ (wi, - dQZ.
Formulate it accurately, and prove.?

E(X|p=uw) = X(wi, ) dQ>

In this case we have conditional measures, and moreover, conditional
densities (w.r.t. @2, not w.r.t. Q1 x Q).

Indeed,ifv = f-u, 0 < f < 00, and & = g- u,thenu— -vandso & = g- (% ) = %-V
2Hint: similar to - what about fi(w;) = 0?
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9c22 Exercise. Let (1, F1, P1) and (€9, F», P») be probability spaces, « :
Q) — Qy a measure preserving map, (E,S) a measurable space, and ¢ :
2y — E a measurable map from (€25, F3) to (E,S). Then

E(Xoa‘gooa) :E(X|g0)

for all X € Li(P,).
Prove it.

9c23 Exercise. Let the joint distribution Py y of two random variables X, Y

be absolutely continuous (w.r.t. the two-dimensional Lebesgue measure m,).
Then

E(Y{X = m) = /pr|X:x(y) dy

where

o pX,Y<J;’ y)

Py ix=e(t) L4
Yx=¥ px(z) .

dm2

) px(x) :/PX,Y(%ZJ) dy, pxy =

Formulate it accurately, and prove.

Back to the “great circle puzzle” of Sect.[9al Suppose that a random point
is distributed uniformly on the sphere. What is the conditional distribution
on a given great circle?

This question cannot be answered without asking first, how is this great
circle obtained from the random point.?

One case: there is a special (nonrandom) point (“the North Pole”), and
we are given the great circle through the North Pole and the random point.
Then the conditional density is %sin 0, where 0 is the angle to the North
Pole.

Another case: the given great circle is chosen at random among all great
circles containing the random point. Equivalently: the “North Pole” is cho-
sen at random, uniformly, independently of the random point. Then the
conditional density is constant, %.3

Having conditional measures, it is tempting to define conditional expec-
tation of X as the integral w.r.t. the conditional measure, requiring just inte-
grability of X w.r.t. almost all conditional measures (which is necessary and

'Hint:

2« . the term 'great circle’ is ambiguous until we specify what limiting operation is
to produce it. The intuitive symmetry argument presupposes the equatorial limit; yet
one eating slices of an orange might presuppose the other.” E.T. Jaynes (quote from
Wikipedia).

3The proof involves the invariant measure on the group of rotations (“Haar measure”).
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not sufficient for unconditional integrability, since the conditional expectation
of | X| need not be integrable). Then, however, strange things happen. For
example, it may be that ]E(X|.7-"1) > 0 a.s., but ]E(X}]—"Q) <0 a.s. An ex-
ample (sketch): P(X =n,Y =n+1) =P(X =n+1,Y =n) =0.5p"(1—p)
forn=0,1,2,...; then]E(aY|X = :L‘) = %a‘c forx =1,2,...; we take
ap > 1 and get E(a¥|X) > a* as., but also E(a*|Y) > ¥ as.! Would

you prefer to gain a® or a¥ in a game?

9d More on absolute continuity

9d1 Proposition. Let (X, S, ) be a measure space, and v a finite measure
on (X,S). Then

v = Ve>03>0VAeS (WA <d = v(d)<e).

Proof. “<" is easy: u(A) =0 implies Ve v(A) < e.

“—": Otherwise we have ¢ and A, € S such that u(A4,) — 0 but
v(A,) > e. WLOG, > p(A,) < oco. Taking B, = A, U A1 U... we
have u(B,) — 0, v(B,) > ¢, and B,, | B for some B. Thus, u(B) = 0, but
v(B) > € (due to finiteness of v), in contradiction to v < p. O

9d2 Proposition. Let (X,S, ) be a measure space, £ C S a generating
algebra of sets, u be £-o-finite,? and v a finite measure on (X, S). Then

v = Ve>03>0VEc& (uE)<d = v(E)<e).

Proof. “=" follows easily from [9d]] (since £ C 5).

“<=": By it is sufficient to prove that u(A4) < 16 = v(A) < 2.
Given A € S such that pu(A) < 16, 7b4 applies to p + v (think, why)
giving E € & such that (4 + v)(EAA) < min(36,¢). Then u(E) < p(A) +
W(EAA) < 264 36 = 6, whence v(E) < ¢ and v(A) < v(E) + v(EAA) <
€+e=2e. O]

In particular, we may take (X, S, 1) to be R (or R?) with Lebesgue mea-
sure (or arbitrary locally finite measure), and £ the algebra generated by
intervals (or boxes).

9d3 Definition. A continuous function F : [a,b] — R is absolutely continu-
ous, if for every € > 0 there exists 6 > 0 such that for every n and disjoint
intervals (ay,b1),. .., (an,by) C [a,b],

dh—a)<s = D> |F(by) — Flw)| <e.

k=1 k=1

'Recall 1bl: =2 =1 —14+1—-1+---=+

1
5.
2As defined before 7b4.
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9d4 Proposition. A finite nonatomic measure p on R is absolutely contin-
uous (w.r.t. Lebesgue measure) if and only if the function

F, x> p((—o0,z])

is absolutely continuous on every [a, b].

9d5 Exercise. Prove Prop. [9d4]

9d6 Corollary. An increasing continuous function F on [a, b] is absolutely
continuous if and only if there exists f € Ly[a,b] such that F(z) = [* fdm

for all z € [a, b].

Taking F' = F), for p of 3d5 we get a continuous but not absolutely
continuous increasing function on [0,1].!

absolutely continuous

function, [104]

measure, [94]

conditional
density, [101
expectation, [96]

measure, 99} [I0]]
probability,

Lebesgue’s decomposition theorem,

Index
Radon-Nikodym theorem, [94]

singular measure,

E(X|F1),pq
E(X|p =0),[7
E(X ), [

Fo, P71
v < i, |94

P(Ale), 07

'Known as “Cantor function”, “Cantor ternary function”, “Lebesgue’s singular func-
tion”, “the Cantor-Vitali function”, “the Cantor staircase function” and even “the Devil’s

staircase”, see Wikipedial
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