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9a Borel-Kolmogorov paradox

Spherical coordinates on R3 may be treated as a map α : (r, θ, ϕ) 7→ (x, y, z)
where1

(9a1)

x = r sin θ cosϕ,

y = r sin θ sinϕ,

z = r cos θ;

this is a homeomorphism (moreover, diffeomorphism) between two open sets
in R3:

(0,∞)× (0, π)× (−π, π)→ R3 \
(
(−∞, 0]× {0} × R

)
.

It does not preserve Lebesgue measure m; rather, m is the image of the
measure2 (

(r, θ, ϕ) 7→ r2 sin θ
)
·m.

Less formally, one writes

dx dy dz = r2 sin θ dr dθ dϕ = (r2 dr)(sin θ dθ)(dϕ) ,

a product measure. And the uniform distribution on the ball x2 +y2 +z2 < 1
turns into the product of three probability measures

3

4π
dx dy dz = (3r2 dr)(1

2
sin θ dθ)( 1

2π
dϕ)

1Picture from Wikipedia.
2See also Footnote 1 on page 100.

http://en.wikipedia.org/wiki/Spherical_coordinate_system
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on (0, 1)× (0, π)× (−π, π).
According to Sect. 6d, the conditional distribution on the sphere x2 +

y2 + z2 = 1 (that is, r = 1) is given by (1
2

sin θ dθ)( 1
2π

dϕ). Further, the
conditional distribution on the circle x2 + y2 = 1, z = 0 (that is, r = 1,
θ = π

2
, the equator) is given by 1

2π
dϕ. And the conditional distribution on

the half-circle x2 + z2 = 1, y = 0, x > 0 (that is, r = 1, ϕ = 0, a line of
longitude) is given by 1

2
sin θ dθ.

Quite strange: the result is not invariant under rotations of R3; why?1

9b Radon-Nikodym theorem

9b1 Definition. Let (X,S, µ) be a measure space. A measure ν on (X,S)
is absolutely continuous (w.r.t. µ), in symbols ν � µ, if

∀A ∈ S
(
µ(A) = 0 =⇒ ν(A) = 0

)
.

If ν = f · µ for some measurable f : X → [0,∞], then ν � µ (recall
Sect. 4c). If µ is σ-finite and ν = f · µ for some measurable f : X → [0,∞),
then ν is σ-finite (by 4c10(b)) and ν � µ. Here is the converse.

9b2 Theorem (Radon-Nikodym). Let (X,S, µ) be a σ-finite measure space,
and ν an absolutely continuous (w.r.t. µ) σ-finite measure on (X,S). Then
ν = f · µ for some measurable f : X → [0,∞).

9b3 Remark. If ν is not σ-finite, then still ν = f · µ, but f : X → [0,∞].

This claim fails badly without σ-finiteness of µ.

9b4 Exercise. Let (X,S) be [0, 1] with Borel σ-algebra, and ν the Lebesgue
measure on it. Prove that ν is not of the form f · µ, if

(a) µ is the counting measure;
(b) µ =∞ · ν.

9b5 Remark. Uniqueness of f (up to equivalence) is ensured by 7a4.

Proof of Th. 9b2 and Remark 9b3. WLOG, µ(X) <∞. Indeed, a σ-finite µ
is equivalent to some finite measure µ1 (by 5b8), and ν � µ ⇐⇒ ν � µ1

(since µ and µ1 have the same null sets, as noted before 5b7); also, ν =
f · µ1 ⇐⇒ ν = f dµ1

dµ
· µ (by 4b7).

• From now on, µ is finite.

1“Many quite futile arguments have raged between otherwise competent probabilists
over which of these results is ’correct’.” E.T. Jaynes (quote from Wikipedia).

http://en.wikipedia.org/wiki/Borel–Kolmogorov_paradox
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If ν is not σ-finite, we take An ∈ S such that ν(An) < ∞ and µ(An) →
supν(A)<∞ µ(A); we introduce A∞ = ∪nAn. Clearly, ν is σ-finite on A∞; and
ν =∞·µ on X \A∞ (think, why). Thus, 9b2 implies that ν = f ·µ for some
measurable f : X → [0,∞].

Given a σ-finite ν, we may assume WLOG that ν is finite (similarly to
µ).
• From now on, also ν is finite.

If ν = f · (µ+ ν) for some f , then (1− f) · ν = f ·µ, and 1− f > 0 µ-a.e.;
ν � µ implies 1− f > 0 ν-a.e. (think, why), therefore ν = f

1−f · µ.
• From now on, in addition, ν ≤ µ.

We need f such that ν(A) = (f · µ)(A) =
∫
f1lA dµ = 〈f, 1lA〉µ for all

A ∈ S; here the inner product is taken in L2(µ). It is sufficient to find
f ∈ L2(µ) such that 〈f, g〉µ =

∫
g dν for all g ∈ L2(µ) (then surely f ≥ 0).

Taking into account that |
∫
g dν| = |〈g, 1l〉ν | ≤ ‖g‖ν‖1l‖ν =

√
ν(X)

∫
g2 dν ≤√

ν(X)
∫
g2 dµ =

√
ν(X)‖g‖µ we see that the linear functional ` : L2(µ) →

R defined by `(g) =
∫
g dν is bounded. Thus, Th. 9b2 is reduced to the

following well-known fact from the theory of Hilbert spaces.

9b6 Lemma. For every bounded linear functional ` on L2(µ) there exists
f ∈ L2(µ) such that

∀g ∈ L2(µ) `(g) = 〈f, g〉 .

Usually, L2(µ) is separable, therefore has an orthonormal basis (en)n, and
we just take

f =
∑
n

`(en)en

(it converges; think, why); then `(g) = 〈f, g〉 for g = en, therefore, for all g.
It is possible to generalize this argument to nonseparable spaces. Alter-

natively, a geometric proof is well-known. WLOG, the norm sup‖f‖≤1 `(f) of
` is 1. For every ε ∈ (0, 1) and f such that `(f) ≥ 1− ε we have

(a) |`(g)− 〈f, g〉| ≤
√

2ε for all g of norm ≤ 1;
(b) ‖f − g‖ ≤ 2

√
2ε− ε2 for all g of norm ≤ 1 such that `(g) ≥ 1− ε;

just elementary geometry on the Euclidean plane containing f and g.

‖·‖=
1

`(·)=1−ε

ε
√
2ε−ε2

√
2ε

Thus, every sequence (fn)n such that `(fn) → 1, being Cauchy sequence,
converges to some f , and ∀g ∈ L2(µ) `(g) = 〈f, g〉.
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Theorem 9b2 is thus proved.

9b7 Remark. Let (X,S) and (Y, T ) be measurable spaces, and ϕ : X →
Y measurable map. If measures µ1, ν1 on (X,S) satisfy ν1 � µ1, then
pushforward measures µ2 = ϕ∗µ1, ν2 = ϕ∗ν1 satisfy ν2 � µ2 (think, why).
Therefore, every measure of the form ϕ∗(f · µ) is also of the form g · ϕ∗µ.

9b8 Definition. Two measures µ, ν on a measure space (X,S) are mutually
singular (in symbols, µ ⊥ ν) if there exists A ∈ S such that µ(A) = 0 and
ν(X \ A) = 0.

See 3d5 for a nonatomic measure on [0, 1] that is singular to Lebesgue
measure.

9b9 Exercise. Two σ-finite measures µ, ν on (X,S) are mutually singular
if and only if dµ

d(µ+ν)
∈ {0, 1} a.e.

Prove it.

9b10 Theorem (Lebesgue’s decomposition theorem). Let (X,S, µ) be a
σ-finite measure space, and ν a σ-finite measure on (X,S). Then ν can be
expressed uniquely as a sum of two measures, ν = νa + νs, where νa � µ and
νs ⊥ µ.

9b11 Exercise. Prove Theorem 9b10.1

9c Conditioning

9c1 Definition. Given a probability space (Ω,F , P ), a measurable space
(E, S) and a measurable map ϕ : Ω → E from (Ω,F) to (E, S), we define
the conditional expectation E

(
X
∣∣ϕ) of an integrable X : Ω→ R

(a) for X : Ω → [0,∞), as a measurable g : E → [0,∞) such that
ϕ∗(X · P ) = g · ϕ∗P ;

(b) in general, by E
(
X
∣∣ϕ) = E

(
X+

∣∣ϕ)− E
(
X−
∣∣ϕ).

9c2 Remark. Existence of E
(
X
∣∣ϕ) is ensured by 9b7, uniqueness (up to

equivalence) by 9b5. The equivalence class of E
(
X
∣∣ϕ) is uniquely deter-

mined by the equivalence class of X.

9c3 Exercise. The conditional expectation is a linear operator from L1(P )
to L1(ϕ∗P ), and ‖E

(
X
∣∣ϕ)‖ ≤ ‖X‖, and E 1

(
E
(
X
∣∣ϕ)) = EX (where E 1 is

the integral w.r.t. ϕ∗P ).
Prove it.2

1Hint: consider dµ
d(µ+ν) .

2Recall the proof of 4d2.
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Some convenient notation:

P
(
A
∣∣ϕ) = E

(
1lA
∣∣ϕ) for A ∈ F (“conditional probability”) ;(9c4)

E
(
X
∣∣ϕ = b

)
= E

(
X
∣∣ϕ)(b) for b ∈ E .(9c5)

By 4c21, ϕ∗
(
(f ◦ ϕ) · P

)
= f · ϕ∗P ; applying this to f+, f− we get for a

ϕ∗P -integrable f

(9c6) E
(
f ◦ ϕ

∣∣ϕ) = f ,

that is,

(9c7) E
(
f(ϕ)

∣∣ϕ = b
)

= f(b) .

Moreover, assuming integrability of X, f ◦ ϕ and (f ◦ ϕ)X,

(9c8) E
(
(f ◦ ϕ)X

∣∣ϕ) = f E
(
X
∣∣ϕ) ,

since for X ≥ 0, f ≥ 0 (otherwise, take f+, f−, X+, X−)

ϕ∗
(
(f ◦ ϕ)X · P

)
= ϕ∗

(
(f ◦ ϕ) · (X · P )

)
= f · ϕ∗(X · P ) =

= f ·
(
E
(
X
∣∣ϕ) · ϕ∗P) =

(
f E
(
X
∣∣ϕ)) · ϕ∗P .

That is,

(9c9) E
(
f(ϕ)X

∣∣ϕ = b
)

= f(b)E
(
X
∣∣ϕ = b

)
(“taking out what is known”, or “pulling out known factors”).

The equality ϕ∗(X · P ) = g · ϕ∗P may be rewritten as

(9c10)

∫
ϕ−1(B)

X dP =

∫
B

g dϕ∗P for all B ∈ S

or, using (4c22), as

(9c11)

∫
ϕ−1(B)

X dP =

∫
ϕ−1(B)

g ◦ ϕ dP for all B ∈ S .

Introducing the σ-algebra Fϕ (“generated by ϕ”) by

Fϕ = {ϕ−1(B) : B ∈ S} ,

we rewrite (9c11) as
∫
A
X dP =

∫
A
g◦ϕ dP for allA ∈ Fϕ, that is, (X·P )|Fϕ =(

(g ◦ ϕ) · P
)
|Fϕ ; also, g ◦ ϕ is measurable on (Ω,Fϕ).
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Thus, we may forget ϕ, consider instead a sub-σ-algebra F1 ⊂ F , and
define E

(
X
∣∣F1

)
as an integrable function on (Ω,F1, PF1) such that1

(X · P )|F1 = E
(
X
∣∣F1

)
· P |F1 for X ≥ 0 ,

and in general, ∫
A

X dP =

∫
A

E
(
X
∣∣F1

)
dP for all A ∈ F1 ,

that is,
E
(
X1lA

)
= E

(
E
(
X
∣∣F1

)
1lA
)

for all A ∈ F1 .

This approach may seem to be more general, but in fact, it is not. Given
F1 ⊂ F , we may take (E, S) = (Ω,F1) and ϕ = id. Thus, all formulas
written in terms of E

(
·
∣∣ϕ) may be rewritten (and still hold!) in terms of

E
(
·
∣∣F1

)
. In particular, (9c6)–(9c9) turn into

E
(
f
∣∣F1

)
= f for F1-measurable, integrable f ;(9c12)

E
(
fX
∣∣F1

)
= f E

(
X
∣∣F1

)
for F1-measurable f(9c13)

(integrability of f , X and fX is assumed, integrability of f E
(
X
∣∣F1

)
fol-

lows).
Also, by 9c3, the conditional expectation is a linear operator L1(Ω,F , P )→

L1(Ω,F1, P |F1) ⊂ L1(Ω,F , P ), and

‖E
(
X
∣∣F1

)
‖1 ≤ ‖X‖1 ,(9c14)

E
(
E
(
X
∣∣F1

))
= EX(9c15)

(“law of total2 expectation”).
By 5f4, L2(P ) ⊂ L1(P ). Let us consider Y = E

(
X
∣∣F1

)
for X ∈ L2(P ).

For every F1-measurable Z ∈ L2(P ) we know that XZ is integrable, and
(9c13) gives E

(
ZX

∣∣F1

)
= ZE

(
X
∣∣F1

)
= ZY . Using (9c14), ‖ZY ‖1 ≤

‖ZX‖1 ≤ ‖Z‖2‖X‖2, which implies ‖Y ‖2 ≤ ‖X‖2 (take Zn → Y , |Zn| ≤
|Y |), thus, Y ∈ L2. Using (9c15), E (ZX) = E (ZY ), that is, 〈Z,X〉 =
〈Z, Y 〉. We see that X − Y is orthogonal to the subspace L2(Ω,F1, P |F1) of
L2(Ω,F , P ), and Y belongs to this subspace, which shows that

(9c16) E
(
X
∣∣F1

)
is the orthogonal projection of X to L2(Ω,F1, P |F1)

(in other words, the best approximation. . . ), whenever X ∈ L2(P ). Taking
into account that L2(P ) is dense in L1(P ) we may say that the conditional
expectation is the orthogonal projection extended by continuity to L1(P ). 3

1For a F1-measurable f we have
∫
f dP =

∫
f d(P |F1

), as was noted before 4c24.
2Or “iterated”.
3The continuity in L1 metric does not follow just from continuity in L2 metric; specific

properties of this operator are used.
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9c17 Exercise. (a) Let b ∈ E be an atom of ϕ∗P , that is, {b} ∈ S and
P
(
ϕ−1(b)

)
> 0. Then

P
(
A
∣∣ϕ = b

)
=
P (A ∩ ϕ−1(b))

P (ϕ−1(b))
.

(b) Let B be an atom of P |F1 , that is, B ∈ F1, P (B) > 0, and

∀C ∈ F1

(
C ⊂ B =⇒ P (C) ∈ {0, P (B)}

)
.

Then

P
(
A
∣∣F1

)
=
P (A ∩B)

P (B)
on B .

Prove it.

We see that an atom leads to a conditional measure,

Pb : A 7→ P (A ∩ ϕ−1(b))

P (ϕ−1(b))
, or PB : A 7→ P (A ∩B)

P (B)
,

a probability measure concentrated on ϕ−1(b), or B; and in this case, the
conditional expectation is the integral w.r.t. the conditional measure,

E
(
X
∣∣ϕ = b

)
=

∫
X dPb , or E

(
X
∣∣F1

)
=

∫
X dPB on B

(check it). Also, an atom is “self-sufficient”: in order to know its conditional
measure we need to know only B (or ϕ−1(b)) rather than the whole F1 (or
ϕ).

In the general theory, existence of conditional measures is problematic.1

But in specific (non-pathological) examples it usually exists and may be
calculated (more or less) explicitly.

9c18 Example. The special case treated in Sect. 6d: (Ω,F , P ) = (Ω1,F1, P1)×
(Ω2,F2, P2) and ϕ(ω1, ω2) = ω1. The conditional measure Pω1 is the image
of P2 under the embedding ω2 7→ (ω1, ω2).

9c19 Example. Let Ω be the unit disk {(x, y) : x2 + y2 < 1} on R2, with
the Lebesgue σ-algebra F and the uniform distribution P (with the constant
density 1/π); and let ϕ(x, y) be the polar angle,

x = r cos θ

y = r sin θ
where

r =
√
x2 + y2

θ = ϕ(x, y) .

1It holds for standard probability spaces, and may fails otherwise.
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(We neglect the origin.)
We have a homeomorphism (moreover, diffeomorphism) between two

open sets in R2:

α : (0, 1)× (−π, π)→ Ω \
(
(−1, 0]× {0}

)
. α(r, θ) = (x, y) .

Using elementary geometry,

P
(
α
(
(0, r)× (θ1, θ2)

))
=

1

π

θ2 − θ1

2
r2 =

(∫ θ2

θ1

dθ

2π

)(∫ r

0

2ρ dρ

)
for −π ≤ θ1 ≤ θ2 ≤ π and 0 ≤ r ≤ 1, which means that P is the image of
the product measure dθ

2π
2r dr on (0, 1)× (−π, π). (Indeed, the latter measure

coincides with (α−1)∗P on the algebra generated by boxes.)1

Neglecting the null set (−1, 0] × {0} ⊂ Ω we see that conditioning on
the map ϕ : Ω → (−π, π), ϕ(x, y) = θ, is equivalent2 to conditioning on
the projection (0, 1) × (−π, π) → (−π, π), (r, θ) 7→ θ. Treated as random
variables, r and θ are independent, and the distribution of r has the density
2r; the same is the conditional distribution of r given θ. Thus,

E
(
X
∣∣ϕ = θ

)
=

∫ 1

0

X(r cos θ, r sin θ) 2r dr ;

E
(
X
∣∣Fϕ)(x, y) =

∫ 1

0

X

(
rx√
x2 + y2

,
ry√
x2 + y2

)
2r dr .

9c20 Example. Still, the same Ω (the disk), F and P , but now let ϕ be the
projection (x, y) 7→ x from Ω to (−1, 1).

Treating P as a measure on R2 we see that it is not a product measure
(think, why), but it has a density 1

π
1lΩ w.r.t. the product measure m2 =

m1 ×m1. Thus, ∫
X dP =

∫
dx

∫
dy X(x, y)

1

π
1lΩ(x, y) ;

for X ≥ 0 we see that ϕ∗(X · P ) has the density x 7→
∫
X(x, y) 1

π
1lΩ(x, y) dy

w.r.t. m1. In particular, taking X = 1 we see that ϕ∗(P ) has the density

1By the way, this is a special case of a well-known change of variable theorem
from Analysis-3: if U, V ⊂ Rd are open sets and ϕ : U → V a diffeomorphism, then∫
U

(f ◦ ϕ)|detDϕ|dm =
∫
V
f dm for every compactly supported continuous function f on

V . A limiting procedure gives
∫
B
|detDϕ|dm = m(ϕ(B)) for every box B such that

B ⊂ U . It follows that (ϕ−1)∗m = |detDϕ| ·m on every B, and therefore, on the whole
U .

2See also 9c22.
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x 7→
∫

1
π
1lΩ(x, y) dy = 2

π

√
1− x2 (and 0 if x2 > 1) w.r.t. m1. Thus, ϕ∗(X ·P )

has the density1

π

2
√

1− x2

∫
X(x, y)

1

π
1lΩ(x, y) dy =

1

2
√

1− x2

∫ +
√

1−x2

−
√

1−x2
X(x, y) dy

w.r.t. ϕ∗(P ). It means that

E
(
X
∣∣ϕ = x

)
=

1

2
√

1− x2

∫ +
√

1−x2

−
√

1−x2
X(x, y) dy for − 1 < x < 1

(just the mean value on the section) for X ≥ 0, and therefore for arbitrary
X.

We observe another manifestation of the Borel-Kolmogorov paradox: by
9c19, the conditional density of y given θ = π/2 is proportional to y, while
by 9c20, the conditional density of y given x = 0 is constant.

As noted after 9c17, a condition of positive probability is self-sufficient. Now
we see that a condition of zero probability is not. Being unable to divide by
zero, we need a limiting procedure, involving a neighborhood of the given
condition.

9c21 Exercise. Let (Ω,F , Q) = (Ω1,F1, Q1) × (Ω2,F2, Q2) (probability
spaces), P � Q another probability measure on (Ω,F), and ϕ : Ω → Ω1

the projection ϕ(ω1, ω2) = ω1. Then, on (Ω,F , P ), the conditioning is

E
(
X
∣∣ϕ = ω1

)
=

∫
Ω2

f(ω1, ·)
f1(ω1)

X(ω1, ·) dQ2

where f = dP
dQ

and f1(ω1) =
∫

Ω2
f(ω1, ·) dQ2.

Formulate it accurately, and prove.2

In this case we have conditional measures, and moreover, conditional
densities (w.r.t. Q2, not w.r.t. Q1 ×Q2).

1Indeed, if ν = f ·µ, 0 < f <∞, and ξ = g ·µ, then µ = 1
f ·ν and so ξ = g ·

(
1
f ·ν
)

= g
f ·ν.

2Hint: similar to 9c20; what about f1(ω1) = 0?
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9c22 Exercise. Let (Ω1,F1, P1) and (Ω2,F2, P2) be probability spaces, α :
Ω1 → Ω2 a measure preserving map, (E, S) a measurable space, and ϕ :
Ω2 → E a measurable map from (Ω2,F2) to (E, S). Then

E
(
X ◦ α

∣∣ϕ ◦ α) = E
(
X
∣∣ϕ)

for all X ∈ L1(P2).
Prove it.

9c23 Exercise. Let the joint distribution PX,Y of two random variables X, Y
be absolutely continuous (w.r.t. the two-dimensional Lebesgue measure m2).
Then

E
(
Y
∣∣X = x

)
=

∫
y pY |X=x(y) dy

where

pY |X=x(y) =
pX,Y (x, y)

pX(x)
, pX(x) =

∫
pX,Y (x, y) dy , pX,Y =

dPX,Y
dm2

.

Formulate it accurately, and prove.1

Back to the “great circle puzzle” of Sect. 9a. Suppose that a random point
is distributed uniformly on the sphere. What is the conditional distribution
on a given great circle?

This question cannot be answered without asking first, how is this great
circle obtained from the random point.2

One case: there is a special (nonrandom) point (“the North Pole”), and
we are given the great circle through the North Pole and the random point.
Then the conditional density is 1

2
sin θ, where θ is the angle to the North

Pole.
Another case: the given great circle is chosen at random among all great

circles containing the random point. Equivalently: the “North Pole” is cho-
sen at random, uniformly, independently of the random point. Then the
conditional density is constant, 1

2π
.3

Having conditional measures, it is tempting to define conditional expec-
tation of X as the integral w.r.t. the conditional measure, requiring just inte-
grability of X w.r.t. almost all conditional measures (which is necessary and

1Hint: 9c21, 9c22.
2“. . . the term ’great circle’ is ambiguous until we specify what limiting operation is

to produce it. The intuitive symmetry argument presupposes the equatorial limit; yet
one eating slices of an orange might presuppose the other.” E.T. Jaynes (quote from
Wikipedia).

3The proof involves the invariant measure on the group of rotations (“Haar measure”).

http://en.wikipedia.org/wiki/Borel–Kolmogorov_paradox


Tel Aviv University, 2015 Functions of real variables 103

not sufficient for unconditional integrability, since the conditional expectation
of |X| need not be integrable). Then, however, strange things happen. For
example, it may be that E

(
X
∣∣F1

)
> 0 a.s., but E

(
X
∣∣F2

)
< 0 a.s. An ex-

ample (sketch): P
(
X = n, Y = n+1

)
= P

(
X = n+1, Y = n

)
= 0.5pn(1−p)

for n = 0, 1, 2, . . . ; then E
(
aY
∣∣X = x

)
= pa+a−1

1+p
ax for x = 1, 2, . . . ; we take

ap > 1 and get E
(
aY
∣∣X ) > aX a.s., but also E

(
aX
∣∣Y ) > aY a.s.1 Would

you prefer to gain aX or aY in a game?

9d More on absolute continuity

9d1 Proposition. Let (X,S, µ) be a measure space, and ν a finite measure
on (X,S). Then

ν � µ ⇐⇒ ∀ε > 0 ∃δ > 0 ∀A ∈ S
(
µ(A) < δ =⇒ ν(A) < ε

)
.

Proof. “⇐=” is easy: µ(A) = 0 implies ∀ε ν(A) < ε.
“=⇒”: Otherwise we have ε and An ∈ S such that µ(An) → 0 but

ν(An) ≥ ε. WLOG,
∑

n µ(An) < ∞. Taking Bn = An ∪ An+1 ∪ . . . we
have µ(Bn) → 0, ν(Bn) ≥ ε, and Bn ↓ B for some B. Thus, µ(B) = 0, but
ν(B) ≥ ε (due to finiteness of ν), in contradiction to ν � µ.

9d2 Proposition. Let (X,S, µ) be a measure space, E ⊂ S a generating
algebra of sets, µ be E-σ-finite,2 and ν a finite measure on (X,S). Then

ν � µ ⇐⇒ ∀ε > 0 ∃δ > 0 ∀E ∈ E
(
µ(E) < δ =⇒ ν(E) < ε

)
.

Proof. “=⇒” follows easily from 9d1 (since E ⊂ S).
“⇐=”: By 9d1 it is sufficient to prove that µ(A) < 1

2
δ =⇒ ν(A) < 2ε.

Given A ∈ S such that µ(A) < 1
2
δ, 7b4 applies to µ + ν (think, why)

giving E ∈ E such that (µ + ν)(E4A) < min
(

1
2
δ, ε
)
. Then µ(E) ≤ µ(A) +

µ(E4A) < 1
2
δ + 1

2
δ = δ, whence ν(E) < ε and ν(A) ≤ ν(E) + ν(E4A) <

ε+ ε = 2ε.

In particular, we may take (X,S, µ) to be R (or Rd) with Lebesgue mea-
sure (or arbitrary locally finite measure), and E the algebra generated by
intervals (or boxes).

9d3 Definition. A continuous function F : [a, b]→ R is absolutely continu-
ous, if for every ε > 0 there exists δ > 0 such that for every n and disjoint
intervals (a1, b1), . . . , (an, bn) ⊂ [a, b],

n∑
k=1

(bk − ak) < δ =⇒
n∑
k=1

|F (bk)− F (ak)| < ε .

1Recall 1b1: − 1
2 = 1

2 − 1 + 1− 1 + · · · = + 1
2 .

2As defined before 7b4.
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9d4 Proposition. A finite nonatomic measure µ on R is absolutely contin-
uous (w.r.t. Lebesgue measure) if and only if the function

Fµ : x 7→ µ
(
(−∞, x]

)
is absolutely continuous on every [a, b].

9d5 Exercise. Prove Prop. 9d4.

9d6 Corollary. An increasing continuous function F on [a, b] is absolutely
continuous if and only if there exists f ∈ L1[a, b] such that F (x) =

∫ x
a
f dm

for all x ∈ [a, b].

Taking F = Fµ for µ of 3d5 we get a continuous but not absolutely
continuous increasing function on [0, 1].1
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1Known as “Cantor function”, “Cantor ternary function”, “Lebesgue’s singular func-
tion”, “the Cantor-Vitali function”, “the Cantor staircase function” and even “the Devil’s
staircase”, see Wikipedia.

http://en.wikipedia.org/wiki/Cantor_function
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