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1. INTRODUCTION

Thanks to J.S.Bell we know that the quantum theo
predicts the possibility of violation of some probabilis-
tic inequalities holding in all local (that is, Einstein-
-causal) classical theories. On violating classical rest-
rictions, the quantum theory itself establishes new non-
-trivial restrictions - quantum analogs of the Bell in-
equalities, Like the classical Bell inequalities, they
are model-independent, that is, do not depend on physical
mechanisms and physical parameters, except the space-time
parameters connected with the local causality. According-
ly, they do not contain the Plank constant. By introdu-
cing some model-dependent features, we obtain inequaliti-
es though not so general but allowing & quasi-classical
passage to the limit; they are quasi-classical analogs of
the Bell inequalities.

Another turn of development of investigations rela-
ted to the Bell inequalities deals with space-time confi-
gurations more genersl than in the original case of two
spaceé-like separated domains. First of all, we give a
mathematical definition formalizing the conception of a
local classical (hidden variables) ,theory. Then we dis-
cuss the problem of what the quantum analog of this defi-
nition is, that is, how to formalize the conception of a
local guantum theory, and give the obtained results.

The mathematical results of this paper are due to
B.S.Tsirelson. General approaches were formed in the pro-

cess of author's collaboration.

2. QUANTUM ANALOGS OF BELL INEQUALITIES

It is known that the Bell inequalities can be repre-
gsented in the form of inequalities linear in observables
and holding for all states. Thus they camn be treated as
inequalities for observables, while states can be elimina-
ted. So the algebraic nature of the Bell inequalities be-
comes clear. In the classical case the observables are
functions of parameters, and the states are probability
distributions of the same parameters, The commutativity
of the algebra of the observables is vital for the Bell

inequalities.
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In particular, the well-known Bell-CHSH inequality
can be considered as averaging the following inequality
for observables:

AJ_BJ_"' AlBa+AaBL'AaBa<2'i3 (1)
here A, A,,B, B, are arbitrary commuting observables
such that |'A I<1, 1By} <1 . The quentum analogs of the
Bell inequalities, introduced in® , cen be treated as
inequalities for observables holding in the non-commutae-

tive case. particular, the following inequality was
ctrained ind ' § inequality

ABy + A By +AB -A,B, < 2VT -1 (2)

here A, A, B, B, are arbitrary hermitean elements of
any C-algebra such that [Af<{, IBy i <t, [A,By] =0

for k=42 end { =12 . The inequality for quantum cor-
relations follows immediately:

FOAB)+F(AB,) + F(AB) —§(AB,) <2025

here f is an arbitrary state on the above C-algebra. It
is known that the value 2{2' occurs in the spin correla-
tion gedankenexperiment - Bohm's version of the EPR one.
This is practically the only case when 212 is attained,
See® for the exact and more general result that charac-
terizes the canonical anticommutation relations or the
Clifford algebras in terms of extremal properties connec-
ted with the quantum analogs of the Bell inequalities.
Note that ) and 3 investigate the case K=l,..., M}

L =1,.,nw , not only m=w =2 . '

The class of correlation functions (or rather of
"behaviors" in the sense of Section 4 below) allowed by
quantum analogs of the Bell inequalities is essentially
smaller than that allowed by general probabilistic axi-
oms together with the widely interpreted local causality
(see Section 4 below). In this sense the quantum analogs
of the Bell inequalities are non-trivial. Therefore
their violation can be revealed in principle in an expe-
riment. In this case the conception of a local quantum
theory would be rejected in such generality as a viola-
tion of the Bell inequalities themselves rejects the
conception of a local classical theorz. Some possible
experiments for this purpose in the high-energy physics
are discussed in 2 ,

Both (1) and (2) can be treated as a consequences
of the following inequalit%:

(.Axe’i*Ale’a*AzBr‘AzBa) <41 ‘[Al;Aa]'[Bs,Bz], (3)
holding under the seme assumptions as (2). From (3) it
follows immediately

FAB, A, Byt AgBy-A By I < (B rTCAL ALTI-ITB B IT. (4




In the classical case the commutators vanish and the
right-hand side egquals 2 in accordance with (1). In the
quantum case the norms of the commutators are at most 2
and the right-hand side is at most {4+2 2 = 2{2' in ac-
cordance with (2).

The proof of (3) is quite elementary. Pirstly, the
following equality can be verified by opening the bra-
ckets and using the relation [A,, B,]=0:

(AiBy+ABq +AyBy = A8, ) + [AL, A1 (B, B,] =
= A+ A B+ (A-A)B) + (A (B+ B ) + (A (B -B, ) -
- (A} +A3 (B +BY),
Secondly, the right-hand side of this equality can be
rewritten as

4-4-(2-4- A -AL (21~ B -B5) ~(A, + A )" (4 -BY) -
~(A-R ) (1-B5) ~(1-AD)(By+B, )"~ (1 - AL (B - Bo)Y
this does not exceed 4'1 since A2 <1 and B} <1 .

3. QUASI-CLASSICAL ANALOGS OF BELL INEQUALITIES

It is natural to believe that a violation of the
classical Bell inequalities by quantum objects must be
small in quasi-classical situations. In this connection
we want to obtain inequalities which, holding true for
quantum objects, approximate the classical Bell inequali-
ties in quasi-classical situations, Such inequalities
will be called here quasi-classical analogs of the Bell
inequalities. At first seight, it is enough to use the in-
equality (4) together with the well-known quasi.classical
passage to the limit. The commutators in (4) "must be"
proportional to the Plank constant h, and for h —0 the
right-hand side tends to its classical value 2. However
there is some surprise here.

Let us consider the quantum mechenics of one-dimen-
sional spinless particles. This case is attractive due
to both its connection with the EFPR gedankenexperiment
and the fact that it was investigated from the view
point of the quasi-classical passage to the limit. We
are mainly interested in observables with two values £i.
Typical examples of such observables are the sign of the
coordinate sign Q and the sign of the momenlam sign P. It
turns out that

I [ siqw G, slqu]ll-*Z', . (5)
the right-hand side does not depend on h despite of the
fact that [Q, Pl =h.

Let us prove (5). The Fourier transform § comnects
the operators P, Q in such a way that in the coordinate
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. -1

repregentation P =¥ -hG,-F ; nence sign P =

-F L (sigv(hB) F =7 1'(siaqu('l)'3 , where h has alrea-
dy disappeared. Let us consider the wave functions

-1 - .
() =137 w(q)=19 ®sign g ; then Fu, =,
Fu, =-tw, (Spwg) Y= W, (SCQ%Q)‘*‘z"‘“i and hence
(siquP) ¥, = F 7 (sign @) Fw =i Wy, (signP) Wy, =-iw,,
W9 see that the Pauli matrices represent the operators -
gign Q, sign P on the two-dimensional subspace spanned

by ¥, and ¥, . However, ¥,,¥, do not belong to L,;
this cen be corrected by means of a regularization, We

-1
can put Yy (0,) = |20, el /e tor & <14l ¢! and =0
otherwise; then ¥, .l =1 and it can be shown that
NF ¥ e —Wiell —=0 'for & —0 . The same is true for
W, ¢ . Arguing as above we see now that the matrix ele-
ments of the operators sign Q, sign P on the vectors
Yie, Vs tend to the corresponding elements of the Fa-

uli matrices when £ — (0 . This implies (5).

The appearance of the Pauli matrices reveals a pos-~
gibility to replace the spin correlation gedankenexperi-
ment of Bohm by a spinless coordinate-momentum gedanken-
experiment, connected more closely with the EPR one. In-
deed, let us consider two one-dimensional spinless par-
ticles described by the coordinate operators Q; , Qg and
momentum operators P,, P,. Let

AL=3WWQ1,A2_=S'“3WP1,Bi-“-ﬁqﬂfﬂ,a, BZ.:S‘.’QW‘PZ- (6)
The correlated state W is formed by analogy with the
singlet spin state: ¥ = e Tty @w +eTby 0y,
(the regularization is left to the reader); then
(AB, +A B, +A, By - AB,)w =2(2"% , as in the scheme
of Bohm. Thus,
I AlBl+A1B2+AZBL—AZBZH=2‘I—Z- (?7)

The wave function for W in the coordinate representati-

on is
-4
W ( )= ZCOS(UY/B)'IO“%I 152 fov 0{10(2.)0:

Gur e -2 s (01/8) 19, G} 72 §ov Guqp <0.

We see that the Bell-CHSH inequality is essentially
(and actually to the greatest extent) violated in the
coordinate-momentum gedankenexperiment. And the partic-
les' masses are of no importance. Each particle can be
replaced by & multi-particle system. In the latter case
we use the total momentum and the barycentre coordinate.

Does is mean that the quantum theory predicts the
possibility to observe an essential (that is, not small)
violation of the Bell inequalities in experiments with
macroscopic bodies? Formally the answer is "yes", if we
insist on the postulate that each operator represents
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some observable and each vector - some state. However,
it is not new that making use of this postulate toge-
ther with the assumption on a possibility of quantum
description of macroscopic bodies cen lead to highly
strange conclusions with a questicneble possibility of
experimental testing, even in principle. By the way, the
gedankenexperiment discussed in® belongs just to this
_type.. However,5) has pretensions to suggest a feasible
experiment showing an essential violation of the Bell
inequalities in such & physical system whose being mac-
roscopic is a controversial problem. We concern here
with very interesting problems connected with Eve-
rett's programme., It is important to know, whether mac-
roscopic bodies can essentially violate the Bell inequa-
lities or not. If yes, one must perform such an experi-
ment. If not, one must understand, how to agree this
fact with the quantum theory. We do not pretend to deci-
de, what is the true answer, yes or no. We pretend only
to make some contributions to both cases; to the "yes"
case - the gedankenexperiment described above, to the
"no" case - the arguments we now proceed on.

We can point out two circumstances preventing from
an essential violation of the Bell inequalities by maoc-
roscopic bodies. Firstly, restricted resolution power of
instruments prevents from measuring observables like
sign Q, sign P. This is some version of the long-known
argument that the length of de Broglie's wave for the
macroscopic body is so small that we cannot meke sure
that it exists. Secondly, the connection of mechanical
‘degrees of freedom with thermal ones prevents from the
preparation of a state described by an essentially (mac-
roscopically) delocalized wave function for the macro-
scopic body. However, there are some attempts to overco-

me this obstacle 5) , ¥,

Both circumstances can be described in the first
approximation by one simple and elementary model. Name-
1y, let us introduce a classical noise affecting coordi-
pnates and velocities of our perticles or, what is essen-
tially the same, of our instruments. It is convenient
for us to introduce the noise in our observables end to
continue working without states. Thus, we are about to
replace Q by G —6,E,-1 and P by P -03Eg 1, where %k,
are rendom variables and 6,,6, are scale parameters. In
accordance with the elementery nature of our model the
reandom veriables E,. are assumed independent and normal-
ly distributed with zero mean and variance 1. For any

P qec‘(ﬁ oo +o=) we introduce the transform e (P; Q)
of %he .algebra of observables:

4x (p,a) A =exp(ih ' (pAe=qP) A exp(- b (Py=g Po))

for sny observable A; k is the particle number. This
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transform is en automorphism such that

Le(P9) i Q) =§(0c-¢1), de(p,g)§(P)=F(Pc-p-1)

for any bounded function f; of course, 4« (P,q) does
not affect Q%, P, with 1gk. So, the above mentioned re-
placements of Py, Qg are expressed by transforms

dw (Oxy Bxi; O¢o Exz) 5 all random variables Ecf '
are assumed independent. The specified transform will be
denoted for brevity by 4, (but it depend on the random
event), and we put L =dy...dy, .

Now we need two types of averaging: the classical
averaging with respect to the rendom variables Ex and
the quantum averaging with respect to a quantum state.
The latter remains implicit, and the former is expressed
by the completely positive mapping p defined by

p(A)=E L (A) for any observable A; here E denotes
the mathematical expectation with respect to the random
variables £ ; and p(A) is an observable again. It is
clear that p= P,... pn where pc(A) =FE L« (A) . One
should not conclude that we observe p(A) instead of A
if there is a noise; we observe various «(A) only, and
for unknown E, . So it is quite possible that p(A)
has a continuous spectrum whereas each &« (A) has only
two possible values according to the two-valued nature
of the used instrument. In contrast with (7) we have

1B (A By + A By +ABi- ABo )l 21 + I kA6, 6,6,.6,00", (8)

where Ax, By are defined by (6). The situation is quasi-
—classical when ©,,6,, >> W and 63 62, >>h ; in
this case the right-hand side is nearly 2. Thus, (8) or
rather its immediate consequence (9) falls under the ca-
tegory of the quasi-classical analogs of the Bell inequ-
alities:

§(p(AB)+ f(p(ABL)+ §(p(ABy)-F(p(ABy)) <

< 2 {1 +5 B hE(0,,6, 060, 0a) 5 (9
here £ is an arbitrary state, but the observables A¢, By
are fixed by (6). It turms out, however, that they may
be unfixed; there is an absolute constant C such that

i P (AyBy+ A By + AB-AB I 2+C ka(ét,téa,aéa,lﬁ’a,a)-l (10)
for any observables A, €, and By € f, with Al <1,

|Byl<l ; here and in what follows 4, is the von Neu-

mann algebra generated by P., Q (to be more exact, by
bounded functions of them). 3o 510) is a quasi-clasgsical
analog of the Bell inequalities more general than (9).

The proof of (10) consists in applying (4) together
with the following result: there is an absolute constant
C such that
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LR (AL, Bi(A)] N -1
W 7 R T 1 i G T YA

This is & non-trivial theorem; its proof is too long to
be given here and will be published elsewhere. The proof
consists of the following three steps: (1) any operator
of #, can be represented as the Weyl quantization of
some generalized function of p, gq; (2) the transformp
can be represented by some "smoothing" of the correspon-
ding functions; (3) the commutator for the quantized
smooth functions can be estimated in a necessary way.

However, the proof of (8) is rather short and is
given below, It is enough to show that

H[Px (Siﬂ“’ Qi);Pl(SLH"’ P)ll<2ath (6,, 6‘1.0)_1- (12)
But P‘(suin, Q)=E 4 (sixaw Q)=-E Sqw(Qrﬁ’;,aE;,a)‘s(ﬁzi Q)

where the function f£f is determined by the id.lentmity 2

E 5%%w(q~—6’5)=5(6’"q) and hence S(m)=(23i’)-b‘x_me'w du.
Similarly, p.(signB)=1{4(6, P;) . In the coordinate
representation P = F!-hQ,-F , where § "is the PFourier

transform, and py(signP,) =§(3"1‘6’[,th; F)=F"} (6,, ha,)¥F.

But 5(5';,-: bQ,) is a multiplication operator, hence
P‘(s'uaw P,) is a convolution operator; it is easy to

calculate its kernel: L{n‘“(q-—q’)“ ewp {-é— 6’:, h2( q —0")2) .

Therefore the operator [Pl(siﬂ”‘ a,), Pi(Siqw F)] trans-
forms en arbitrary function w'(¢) into the function

[dg'wiq)io(q-9) " (§ 620~y exp (2 60 k*(q-9')°).
But |§(6,,9)-§(8:9)1 < 2.,(2.37)—1/26":; lg-q'| and hence
the a‘?aolute value of _t‘t;is functiozn d_%es not 2e:nl:ceed

j&o, | ()1 T2 em ™™ exp (567, b7 (4-¢))%). It
only remains to calculate the norm of this convolution.

Completely positive mappings for which the supremum
from the left-hend side of F11) is small, may be of some
interest for Everett's programme. As any completely po-
gitive mappings they can arise from unitary operators in
tensor products ¥ . Such an approach to the quantum
description of macroscopic objects can be more realistic
than the "interpretation basis" approach ® ; and these
bases are useful as a more elementary model; cf. !5’ . But
at the same time the approach we have just akgtched Te~
moves us from the solution of the interpretation unique-
ness problem, while the paper 5/ brought us nearer to

it.
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4. FORMAL DESCRIPTION OF LOCAL CLASSICAL CONCEPTION

The Bell inequalities are considered proved for all
local classical theories, However, to the best of our
knowledge there is no definition of the relevant class
of theories. One has a clear but informal idea of it and
formal but "ad hoc" formulations used in proofs. So the
local classical conception is not Jjet formalized. We
suggest here such a formalization. It will be used in
the next section as a base for constructing its quantum
analogs. We use the word "conception" following® (p.
204), It would be useful to compare in detail with?
the present text before its publication, but the time
was pressing.

First of all we determine a necessary class of do-
mains in the Minkowski space-time. Let T ,. .. be the
class of all open sets t in the space-~time that are
"past layers" or "decreasing sets" in the following sen-
se; if xet and y chronologically precedes x then y€t.,
Also both the empty set and the whole space-time belong
to P yiwk - However it is more convenient to base a for-
mal theory on a suitable class of partially ordered sets
T rather than on T=T gy« oxclusively. We only assume
here that T is a complete distributive lattice ) and we
call such T an admissible lattice, but we reserve the
right to add some further technical conditions in publi-
cations to follow. Of course, T ywk is an admissible
lattice. The maximal element of T will be denoted by
+ oo , the minimal by — o=

We treat the classical observables as measurable
functions on a measurable (Borel) space £3 . A point
® € (2 represents a whole history, and the space-time
structure will be represented by a family of ¢ -fields.

let T be an admissible lattice. We define an admis-
gible T-femily on & as a family F = {F(t)}ier of
6 -fields (in other words, 6 -algebras) T (1) of sub-
sets of G2 such that F (supte) = sup § (Vx) for any
t.,t2,...€T . The supremum in the left-hand side is ta-
ken in T, in the right-hand side - in the complete lat-
tice of all © -fields. This definition is also not fi-
nal; to avoid mathematical pathologies we are about to
add and use some technical conditions in the future.

To express the local causality we use the idea of a
local intervention in a space-time distributed physical
system. The response of the system must be non-agticipa—
tive, that is, must be localized in the future with res-

pect to the intervention.

4.1, Definition. A behavior scheme is a collection
(T, ZZ,?,‘O’ f;) , where T is an admissible lattice, L
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is an arbitrary set, J, and 7; are admisgsible T-famili
n O such that F (ST Cehat is, To(L)CF (L)) for

A behavior scheme provides a formal description of
kinematics (but not dynamics) of the system under consi-
deration. A point o € &2 represents a space-time histo-
ry of the system (involving & history of interventions).
A function on £2 , measurable with respect to ¥,(1) ,
represents a classical observable which is localized in
the t-past (recall that en element of T, is a "past
layer" domain in the space-time). Such observables de-
pending only on an interventions history are represented
by 3,0(5 -measurable functionsa.

4,2 Example. Let T=T : C) consists of the pairs
(u,g) Tormed by a reaffyalued functions u and g on the
space-time (we leave to the reader the choice of suitab-
le classes of functions); ¥« (1) is generated by all me-
asurable functionals of g (for k=0) or of u,g (for k=1)
that are localized in the t-past, that is, depends on
the restrictions of g (and ug to the given "past layer"
domein only. -

4,% Example. Let T=T yink ; GO consists of the pairs
(£,w) formed by & union w of a finite set’ of non-inter-
secting time-like curves in the space-time (each curve
being unbounded both in the past and in the future) and
a vector field f on w which is orthogonal to the tengent
vectors; F« (1) is generated by all measurable functio-
nals of w (for k=0) or of f£,w (for k=1) that are locali-
zed in the t-past.

4.4 Exemple. Let T consistsof four elements denoted by
—o 1, ,t,, + > with the lattice structure determined
by LAty m-o=, LVig=so=  let QA consists of 2"=16
elements, and let four functions denoted by &,b,A,B be
given on L) , each taking two values 1 only, with each
combination of this values occuring once; © -fields are
generated by the functions listed below:

t — O t‘_ tg + oo
functions generating J, (1) none & b a,b
functions generating ¥, (1) none a,A b,B a,b,A,B

The example 4.2 provides a formal description of
the kinematics of a classical field u generated by sour-
ces which are continuously distributed in the space-time
with a density function g; g is considered as an inter-
ventions history, u as a responses history. The example
4,3 deals with a finite system of classical relativistic
particles; their forced trajectories w are considered as
sn interventions history, and the resulting forces f -
as a responses history. In the example 4.4 the interven-
tions are described by two parameters a=1, b=t1, the
responses also by two parameters Aa*1, Bex1, and the
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space-time structure is such that the intervention a
chronologically precedes the response A but not the res-
ponse B, and b precedes B but not A, We shall see that
this scheme is immediately connected with the Bell-CHSH
inequality, and we call it the Bell-CHSH scheme,

4,5 Definition. A stochastic behavior (in a given be-
havior scheme) i8 & function p:Qx YT, (+o=) — [0,i]

which is a regular conditional probability ¥ on ¥, (1)
with respect to F,(t) for all teT. That is, p(w,X)

as a function of We X is F,({) -measursble for any fi-
xed ¥, (}) -measurable X CQ , end p(®,X) as a
function of X € ¥ (+°°) is a probability measure on £
for any fixed W €& , and p(w,X)=1 for any

XeF, (+=), @ eX.

4,6 Definition. A deterministic behavior is such a
stochastic behavior that takes only two values, O and 1.

4,7 Example. We use the scheme 4.2 (that is, the sche-
me infTroduced in example 4.2); U, denotes the solution
of the wave equationQu=g vanishing in the infinite
past. We assume both the classes of functions u, g and
the meaning the equation and the "initial" condition are
understood to be such that the above solution always
exists and is unique. Let E be a random field on the
space-time, Then we put p(w,X)= P{(w?+§,¢})ex}

for any @ =(u,4)€Q , XE€ F (+e=) . It is easy to
see that p is & stochastic behavior.

4,8 Example. All es in 4,7 except for & that equals
zero (idenblcally and always); thus p (w, X)=1 when
(ug, g) € X , otherwise =0. It is clear that p is & de-

terministic behavior.
4,9 Exemple. We use the scheme 4.4. Let p(0,X)=

=+ = (1+TA(Q)B (W), where T =+1 when a(@) =b(w)=1,
otherwise T = -1 , snd the sum is taken over all weXsuch
that o (0;) = o (w), b(@,)=8wW) . It is easy to see that p
is a stochastic behavior. In fact, it is trivial that

p(w,{A=1}) as a function of w is ¥, (t,) -measurable,
gince it is equal to 1/2 for all W .

The exeample 4.8 deals with the dynamics determined
by the wave equation; naturally the behavior is determi-
nistic. The random addition in the example 4.7 leads to
a non-deterministic behavior. The behavior 4.9 is note-
worthy as it violates the Bell-CHSH inequality. Indeed,
let us consider the correlation between A and B as &
function of the parameters a, b: E(a,b) =
==SA((D‘)B((D;) p (Wdw,) , where w is such that o (W)=a,
6(m)=6 ; of course, the integral is reduced to a finite
sum. It is easy to calculate that E(a,b)= T =+1 when
asb=1, otherwise =-1, If we substitute this values in
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the Bell-CHSH inequality |E(a,b)-E(a,b )| +

+ |E(a' ,b)+E(a’ ,b' )| & 2 for a=b=+1, &' =b' =-1, then the
left-hand side attains the value 4. However, any determi-
pistic behavior in this scheme satisfies this inequality
since the corresgmndi’ng E(a,b) is factorizable:
E(a,b)=E,(a)E,(b).

4,10 Definition. A hiddenly deterministic behavior is a
atochastic behavior which can be represented in the form

i . )
p=1 i dx ., that is, p(0,X) = { pg(@,R)dE,
where each py for Ee€[(,1] is & deterministic behavior
(in the same"scheme), and Py (W,X) as a function of §

and W is jointly measurasble for any fixed X. (0f course
one can replace [O,l] by another suitable measure spaces

It is clear that the behavior 4.7 is hiddenly deter-
ministic. On the contrary, the behavior 4.9 is not hid-
denly deterministic, since otherwise it would satisfy the
Bell-CHSH inequality.

The Bell-CHSH scheme (see 4.4) is solved to the end.
The set of 8ll stochastic behaviors in this scheme is a
polytope, as well as that of hiddenly deterministic ones.
111 tops and faces can be written out explicitly for both
polytopes. In fact, any scheme with finite £2 can be sol-
yved to the end in the same sense, as it was noted ' in
another form. Indeed, all the tops are given for the po-
lytope of hiddenly deterministic behaviors by their defi-
nition; applying known algorithms we can find the faces
in a finite number of steps. Conversely, the faces are
obviously known for the polytope of stochastic behaviors,
and we can find the tops. By the way, the behavior 4.9 is
a top of the polytope of stochastic behaviors, and it is
the only non-deterministic top up to obvious symmetries.

However, finite schemes axe interesting not on their
own but due to their connections with infinite schemes,
and such connections should be pointed out. We sketch
here several modes (ways) of reduction of schemes which
allow to pass from & qivex} scheme (T, Q.,‘;}'o, ,) to a
amaller scheme (T', Q' Fo,F) -

4,11 Mode. Let an admissible lattice T’ be a complete

gsub-1attice of T. Then one can restrict the families ¥,

F, to T'.

4,12 Mode. Iet & be a congruence on T such that the

factor—Tattice T'=T/©® is admissible and t, = t2(8)

implies ¥« grt'l)-'.ﬂ (1,) for k=0,1. Then one can trensfer
o

‘J‘Ol 3‘1

4.13 Mode. Let Q' be a F,(+o~)-measurable subset of
.C’)  Then one can restrict all given ¢-fields to Q2 .

4.14 Mode. Let ¥, be en admissible T-femily on &2 such
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that F,(1) < ¥,
replace (3';) by 13'21/) .< $.{1) for all teT. Then one can

4.15 Mode. If the 6 -field ¥, (+°°) does not separate
points of ) , then one can identify the equivaleggrpo-
ints obtaining the factor-set Q' .

It is easy to see for all listed modes that any sto-
chastic behavior in the initial scheme induces & corres-
ponding stochastic behavior in the reduced scheme, and
that a deterministic/hiddenly deterministic behavior in-
duces a behavior of the same type. It is possible to pass
from the scheme 4,2 or 4,3 to the Bell-CHSH scheme, ap-
plying in sequence the listed modes., Thus, we may apply
the Bell-CHSH inequality to all hiddenly deterministic
behaviors in various schemes,

We introduce now a composition of behaviors, and (as
a preliminary) that of schemes. Let ¥, ¥, ¥, be admis-
sible T-families on the same L2 and ¥, (t) < F(t) < F, (L)
for any te€T. Then we have the three schemes:
(T,Q)les_‘?‘) H (T;Q:S'Z,Ts) ;(T,Q’Tl,?z). Ve
call the third scheme the composition of the first and
the second ones,

4,16 Definition. The composition p of stochastic beha-
viors P, and p, given in the schemes (T,S2,¥,,¥,) end
(T,Q, %.,%,) respectively is a stochastic behavior in
the scheme (%ﬁ 2, 3},@5) defined by the equation
P(LD,X)='S P, dw') p, (0, X) for all w e L2 ,

X e Fy(roo).
It is easy to see that this equation gives in feot a
stochastic behavior. If both p, and p, are deterministic/
/hiddenly deterministic then p is of the same type.

The composition of behaviors describes a composition
of two systems which are distributed in the same space-
~time and locally intersct in such a way that the output
of the first system enters the input of the second one.

5. ON FORMAL DESCRIPIION OF LOCAL QUANTUM CONGEPTION

The quantum theory predicts the possibility of a re-
alization of some behaviors violating the Bell inequali-
ties and therefore not hiddenly deterministic. At the se-
me time the quantum theory does not require going out of
the class of stochastic behaviors, Furthermore, the quan-
tum theory prohibits some stochastic behaviors, as it ob~
viously results from quantum analogs of the Bell inequa-
lities, It is natural to believe that there is a new
class intermediate between the cless of hiddenly determi-
pistic behaviors and that of sfochastic behaviors, namely
the class of quantum behaviors. If so, & mathematlcal de-
finition of this class should be given.
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Tpis problem turns out to be non-trivial. To shed
gsome light on the peculiar nature of the problem, we draw
an apalogy with the old problem of formalization of the
notion of the effective computability. According to the
well-known Church thesis (see for example ') ,12)"), any of
the known equivalent definitions of the general recursive
function (definitions due to Turing, Kleene, Church,
Fost, Markov and the others) should be taken for the
mathematical definition of the notion of effective compu-
table function, We do not touch here on the subjeotive
aspect, that is the execution of an algorithm by conscio-
usness; we touch only on the objective aspect, namely the
execution of an algorithm by a machine. On the one hand,
the Church thesis cannot be proved mathematically, as it
connects a formal notion with an informal one. On the
other hand, this thesis was not deduced from any physical
theor{. Its acceptance by mathematicians is based on in-
formal arguments appealing to both the common sense and
the physical intuition. Some formal arguments also exist,
but they are not crucial. As @ matter of fact the Church
thesis consists of two statements that we shall consider
separately. By the way, recently more profpund discussion
13) 14) nas been promoted about physical aspects of this
problem. '

Let us start with the first statement that each re-
cursive function is effective computeble. To be convinced
in this, it is sufficient to show that the Turing machine
is physically realizable. This follows evidently from the
present know-how on practical realization of automatic
devices, if one slightly idealizes empirical facts., It is
nothing else but some gedankenexperiment indeed. It is
worth to stress that such gedankenexperiment needs only
a very restricted list of various physical phenomena. In
addition, one can use various lists on his own choice ob~
teining the same final result,

Turn now to the second statement that each effective
computsble function is recursive. Here the arguments are
less precise. The question has been discussed of what
kind of restrictions our conception of physical reality
imposes on computing processes, resulting in the conclu-
sion that only such processes are realizable that cen be
described by recursive functions. Various gedankenexperi-
ments were considered leading to the corresponding well-
-defined classes of computing processes.

Additional arguments of formal nature are, firstly,
the presence of proper general properties of the.class of
all recursive functions (for example, the composition of
any such functions is again a such runc?ion), secondly,
the presence of many equivalent definitions of this

class,
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A}most all seid above on the formalization of the
effective computability is applicable mutatis mutandis to
the formalization of the quantum realizability of behavi-
ors., This is why we dwell on the Church thesis. Its his-
tory suggests a possible approach to the problem of how
to define guantum behaviors. We are not able to solve
this problem nmow, that is, to formulate such a definiti-
on. In this connection we propose the following way: to
suggest, to argue and to investigate, on the one hand,
necessery quantum conditions, that is, such conditions
for a stochastic behavior that are believed to be obliga-
tory from the view point of fundamentals of a local quan-
tum theory, and, on the other hand, sufficient quantum
conditions, that is, such conditions for a stochastic be-
havior that asre believed to ensure the availability of a
physical realization of a given behavior within the fra-
mework of a local quantum theory. In both cases one must
investigate general properties of suggested classes of
behaviors snd also find equivalent definitions. Making
first steps on this way, we expect that one will achieve
the coincidence of a necessary condition with a suffici-
ent one.

The investigation of necessary quantum conditions,
jpitiated in the paper » which is based on '® and ‘¥
is continued here. Note that the paper '® may be conside-
red as an attempt to suggest a sufficient quantum condi-
tion, however from another view point and in other terms.

5.1 Definition. First quantum construction in a given
scheme of behavior (T,Q2, F., F.) is a collection (H,W,P),
where H is a Hilbert space tof a finite or the countable
dimension), W is a density matrix in H,end P is a funoc-
tion on x §,(+o=) , whose values are orthzsonal pro-
jectors in H, P (w,X) as a function of W€ is assu-
med Fo(l) -measurable for any fixed ¥, (1) -measurable
XcQ, end P(w,X) as a function of Xeti(+e) is
assumed to be a projector-valued measure on L for any
fixed W €L , and P(w,X)=1 for any X & (+ =),
weX.

It is important that projectors P(w,X) for diffe-
rent W are not necessarily commuting. First quantum con-
gtruction is called finite-dimensional if H is finite-di-
mensional. Any first quantum construction (H,W,P) induces
obviously the stochastic behavior p by the formula
p( ) ,X) = Tr(P(w ,XW).

5.2 Definition. A stochastic behavior p sgtisfies the
first necessary quantum condition if it is induced by so-
me first quantum construction,

T™e set of all stochastic behaviors in a scheme
(T,Q, ., ) satisfying the first necessary quantum con-
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dition, will be denoted by Q.By (T,Q, ¥, §.) ; "QB" means
"quantum behavior", "+" means "necessary" (because QB'
approximates the unknown QB excessively), "1" is the
version number. If p is induced by some finite-dimensio-
nal first quantum construction then we write

PEQBIL(T,Q, T, 7).

5.3 Theorem. (a) Both sets QB;(T,Q,:T;,?;),

Q B:'o (T,Q, ¥, T.) are convex.

(b) I p,€ QB (T,Q,7,,%) ana p,€ QB (T, Q,7,, %),

then the composition p of p,and p, belongs to

QB} (T,Q, 7, F,) ; the same holds for Blo .
(¢) All hiddenly deterministic behaviors belong to QB[L H
all deterministic behaviors belong to QB .

The proof is easy. (a) It is enough to consider the
direct sum P(w,X) =P, (0,X) ® P,{w, X). (b) We use the
tensor product with P (w,X)= § P, (w,dw') @ B, () X).

(c) For deterministic p it is enough to put P(w X) =
=p(w,X) 1 with arbitrary H, W. For hiddenly determi-
nistic p we use the continuous direct sum of Hilbert
spaces ?‘ , Appendix 4). -

In the rest of this section we give an equivalent
definition of the class QB[,*D for a class of schemes de-
fined below.

Let S be a finite partially ordered set, and let for
any s €S be given two finite sets Qo§s), €,(8) . Then
we cen construct the scheme (T,82,¥,,3,) as follows.
The lattice T consists of all subsets tc S which are "de-
creasing", that is, (5,<5,4%5,€t) = (s,et) . The set
Q is the Cartesian product = Q. xQ, , where Q, =

= XgQ«(8) for k=0,1. Thus, an element we L2 is a pair
of functions ),, W, on S with W« (8) € £2,(8) for all s.
The 6-field J,(t) is generated by "functionals"

W — Wy (8) with s€t and 1<k. Such a scheme will be
called finite factorizable.

Let &t ﬂ{.ﬂs} scS be a family of algebras of opera-
tors in H. We say that £ decomposes H, if each fig is a
factor of the type 1 and these factors mutually commute.
It is well-known (see !®) , Appendix A), that it is possib-
le in this case to identify H with a tensor product
H=(®Hs)®H, in such & way that each # is identi-
fied with the algebra of all operators in Hg.

5.4 Definition. Let (T,£ 7, %) ve a finite factori-

zable soheme, constructed as asbove from S and { Q,(8)} .

We define second quentum construction in this scheme as

a collection (H, & , &7, W, W, , P) such that:

a) H is a Hilbert space; . .

b) both & -{.ﬂ,ﬁ} a ¢ ={l_.ﬁs} decompose H; ,
e S such that s'¢ s" (that is, 8> 8

¢) for any s8',s
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:it:hey are non-comperable) the algebras .ﬂ,s—r and .‘ﬂ.;" com-
(d) W = W.} , each Wg being a function on -
se values {arg density mgtrioes in & ; C20(s) who
(e) W, is a density matrix in #, , where #, is the al-
ebra of all operators in H which commute with all 4y ;
) P={Ps} , each pg being a projector-valued measure

on ,(s) with values in #| .

Thus we have two decomposijr:ions +of one and the same
space: ( @ Hy) @ H =H=( 8 Hs)eH,.
One may consider W¢(w) a density matrix in H; for any
seS and ) e ,(5), and W, a density matrix in H,. Fur-
themore+P (W) may be considered an orthogonal projec-
tor in Hy for any se§ and e f2,(s), and
(.)EE(S) Py (W) = ﬁ(Hs) for all s. Here and in what fol-

lows | (H) denotes the identity operator in H. Second qu-
antum construction is called finite-dimensional if H is
finite-dimensional. Any second quantum construction indu-
cea a stochastic behavior. Namely, we put W (w,) =

- W, T;T Wy (W,(8)) for any w, € Lo ; P(@)~= T Py (0,(s)

for, any w; € L2, ; P(‘D,'; W) = Tv (P (0,) W (®)) for any
W =(W,,w,) and W'=(W,, W,) such that W, gw;" ',
otherwise p (,w )=0; finally p(w ,)(,)-QEA p(w,w").
It is easy to see that p is a stochastic behavior.
5.5 Theorem. A stochastic behavior in a finite factori-
zable scheme belongs to QB,', if and only if it is indu-
ced by some finite-dimensiohal second quantum comstruc-
tion.

Thus, we have two equivalent constructions under so-
me additionsl assumptions. The first construction resemb-
jes the Heisenberg picture: the quantum state is left fi-
xed, and interventions affect observables. The second
construction resembles the scattering: two decompositions
of one Hilbert space are given, "in" and "out"; interven-
tions affect density matrices in the "in" spaces Hé; the
responses result from quantum measurements in the "out"
spaces H;. Unlike the real scattering theory, it is es-
sential here that "particles" come and go away in the
prescribed order. This order imposes specific restricti-
ons on the corresponding stochastic behavior, which is
here a peculiar analog of the S-matrix. It is interesting
to note that two equivalent constructions have at the
first sight different symmetry groups. In fact, the class
QB,', is evidently ipvarient under any invertible maps

&’ Q preserving all & -fields ¥, (t). The obvious
symmetry group for second quantum constructions is the
direct product over s €S and k=0,1 of the permutation
groups for £2,(8) . The latter is essentially smaller
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than the former, Hence, the class of all second quantum
constructions has non-evident "hidden" symmetries.

The notion of first quantum construction for a fini-
tg factorizable scheme appears in fact in " (the condi-
tion (2) of Theorem 4). An attempt was made there to re-
formulate this condition but it failed. Firstly, the con-
dition (1) of Theorem 4 contains mistekes. The second
author of the present paper (B. Ts.) makes use of this
opportunity to offer his apologies. Secondly, the very
idea of formulation such conditions in terms of operati-
ons seems to be worse than the "scattering" idea used
here.

The rest of this section contaeins a part of the
proof of Theorem 5.5. As above let us construct from S
and { Q.(s)}] the finite factorizable behavior scheme

(T,R,%,%) which is fixed in what follows. Within
the proof we use the classes B1, B2, Baw, B2s of stochas-
tic behaviors and abbreviations C1, C2, C2w, C2s for the
types of constructions introduced below. Each of these
behavior classes is the class of all stochastic behaviors
induced by constructions of the corresponding type desc-
ribed as

C1: first quantum construction;

C2: second quantum construction; ’

C2w: C2 weekened by eliminating the condition that each
algebra fty is a factor;

C2s8: (2 strengthened by adding the following”condition
on the density matrices Wg(w) : Wg(w') Wg(w™) =Ws (0
when s’ =8,,otherwise =0, In terms of the tensor product

H=(®H;)®H, we can say that Wg(w) are one-dimen-
sional density matrices in the spaces Hy and the corres-
ponding one-dimensional subspaces in each Hy are mutually

orthogonal,

Thus, B1=QB. Each C2s is a C2, and each C2 is a
C2w, hence B2s c.B2 « B2w., The finite~-dimensional versions
will be denoted similarly with adding "f": C£1, Bf2w, and
go on. Thus, Bf1=QB, , Bf2s c Bf2c Bfow, and Bf1cB1,...,
Bf2w c B2w. Two constructions are called equivalent if
they induce the same behavior. To distinguish objects re-
lated to different constructions we use left-side indi-
ces: ‘H, 2H, ®E, YH and so on.

Theorem 5.5 asserts that Bf1«Bf2. Its proof consists
of the proofs of the following four ine¢lusions:
Bf2 c Bf2s c Bf1 < Bf2w c Bf2, The first three of them cen be
proved easily, the finite-dimensioness being of no impor-
tance; in fact we prove at the same time that
B2 ¢ B2s € B1 ¢ B2w, The proof of the fourth inclusion
Bf2w c Bf2 is more complicated, the finite-dimensioness
being used essentially, and whether or not B2wec B2 is

true is unknown.
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5.6 Proof of inclusions B1c B2w, Bf1cBfow., Given ‘H,

Iy, ‘P Porm a C7T; we have To Find “H YR R T, YW,

""WO,WP forming an equivalent C2w.

Put "H, ='H YW,='W, “Hi= L, (£2,(8)) ; here and
in what follows L,{(Z), Z being a finite set, denotes the
finite~dimensional Hilbert space of all functions on S;
e(z) denotes the unit vector in this space corresponding
to ze Z, and w(z) denotes the corresggonding density mat-
rix. Put YWg(w) = W (w) for wWe &,(8) ;

“H =(@"H3)®"Ho=(8 L,(L:(s))) @ H =
=L, (% Qo(8))@'H=1,(€2,)8 ' H.
This decomposition determines the algebras “fi g .

It is clear that 'P(w,X)= ZZ P(w,, @) , where
Wo € &2, is the projection of the point () € Q = Q,xL
into &, , and the sum is taken over all W, € L2, such
that (W,, W;) € X . Further, P can be factorized:

P (o, Wy) = T;[ P, (W,, w, (8)) . Actually, putting
Qe={w, e,  Wi(8)=w,(s)} for a fixed w, we see that

N Qg contains the point ), only; and, in general, eny
pfojector measure Q has the property Q(XNY)=Q(X)Q(Y).
Thus, Pg (W,,w;) is defined for w, € &2, , 8€8,

0,€ ©Q,(s) ; as a function of «), it is §,(1{) -measureb-
le when s €t; as a function of w; it determines a pro-
jector measure. Now we define the operator "P, (u,) in
“H =L, (£2,) ®'H for se 8, W, € 82,(5) by the equality

"By (00)(8 (0y) @ h) =& (60) ® (P (o, Wy )
for all W, $2, , he'H. As a function of w; , it deter-
mines a projector measure. And it commutes with “# ¢
when 8’ 4 8, since P (w,,w,) in fact does not depend on
W, (s') for such s. All the operators Py (w,) mutually
commute; in fact, they leave invariant each subspace
e(w,)®'H , and on such subspace they are reduced to

PG ((‘)07“.)1) *

Let “f; be the algebra of operators on “H generated

by all P (w,) , W, € &2,(8). These algebras mutually

commute, and "JL; commutes with “# ' when 5'4; s. Now we
have for W, e S2,,w, € &2,

T1 (W (@) ¥ P (@) =
= Tr ((( & ¥ Wy (o () 8" W, ) - TT ¥Pg (w0, (8))) =
= T ((w (o) ®W) - TT ¥ P; (&, (8))).

!
The trace is teken in fact in the subspace e(W.)® H
and it can be rewritten as the trace in "H:
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=T (lw U Ps(d)o, (Q‘ (3))) = T4 (lw'P(wo;wi ))s
which proves the claim.

The inclusion Bf2w c Bf2 follows easily from Theorem
5.7 whose proof will be published elsewhere.

5.7 Theorem. Let H be a finite-dimensional Hilbert spa-

ce and d,,...,&, be arbitrary algebras of operators on H.
Then there are a finite-dimensional Hilbert space H;, an

unit vector lu,elrli and algebras eﬁ,,...,atw, 35,,...,33.‘,

of operators on H=H®H, such that:
(a) for each k=1,...,n the algebra @3, is a factor and

e C By
(b) for each k=1,...,n there is an igsomorphism between
algebras #, asnd #, such that for corresponding opera-

tors A ed, and A e &, the equality A(h®h,)=(Ah)® W,
holds for all h €H;

(c) if there are pairs (k,l) such that 1<k<l<n andd,
commutes with #i , then P, commutes with B, for each
such pair; 2

(d) if there are k such that 1<k <n and the algebra &t
is a factor, then B, = f, =#,® 1 (H,) jor eath such x.
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