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Abstract

In this thesis, we consider scheduling and load balancing problems. In scheduling problems
we are given a set of jobs to be assigned to free time slots on one of several processors. In
these problems the time axis is the only axis that exists. In load balancing problems on the
other hand, each job arrives with its active time period and we have to choose a machine
to which we assign it. So in these problems, in addition to the time axis, there exists a load
axis which we wish to balance. The goal in both problems can be either to minimize a cost
function or to maximize a bene�t function. Providing optimal solutions for these problems
is usually intractable, hence we are considering approximated solutions for both o�-line and
on-line aspects of the problems.

A short summary of problems and results in this thesis follows. The �rst two problems
are load balancing problems, the next two are scheduling problems and the last one is a
routing problem.

Temporary Task Assignment on Identical Machines

We consider the o�-line temporary task assignment problem. Jobs, in addition to their
weight, have an arrival and a departure time. The goal is to assign the jobs such that the
maximum load over both machines and time is minimized. We show that no polynomial
time algorithm can achieve an approximation ratio below 1:5 for this problem. However,
for the case where the number of machines is �xed, we present a PTAS.

Online Load Balancing with Unrelated Machines

Here we consider on-line load balancing of temporary tasks on unrelated machines. We
prove an inapproximability result for the problem and show that a trivial algorithm almost
achieves the best competitive ratio possible. In the special case of the related-restricted
machines model we show tight results on the competitive ratio for a whole range of speeds.
Our results apply to randomized algorithms as well.

Multiprocessor Scheduling without Migration

For the o�-line problem of scheduling jobs in a multiprocessor setting in order to min-
imize the ow time, the SRPT algorithm is known to perform within a logarithmic factor
of the optimal schedule. This algorithm both preempts jobs and migrates jobs between
machines. Unlike preemption, migration is not known to be necessary for achieving these
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low approximation ratios. We show how one can achieve the same approximation ratio
without migrating jobs. This result also applies to the on-line setting where the algorithm
achieves the best competitive ratio possible.

Bene�t Maximization for Online Scheduling

In this on-line scheduling problem jobs arrive over time. Our goal is to maximize the
total bene�t gained from the scheduling of the jobs. A common model is to give each job its
own deadline and to take into account only jobs completed by their deadline. The relatively
high competitive ratios encountered in this model motivate the search for more reasonable
measures of bene�t. We consider a model where the bene�t gained from a job is a function
of its processing time: the longer a job is delayed the lower the bene�t gained. A constant
competitive algorithm is shown for this model.

The Unsplittable Flow Problem

The Unsplittable Flow Problem (UFP ) is a routing problem where we are given a
capacitated graph and a set of connection requests with individual demands and pro�ts.
The objective is to route a subset of the requests in order to maximize the total pro�t of
the routed requests. The routing must obey edge capacities and use single ow paths. We
present algorithms for several variants of the problem. We identify the three main cases
of the problem and either improve or match the previously known approximation ratios
for all three. However, unlike previous algorithms, all of our algorithms are both strongly
polynomial and combinatorial. While the results above apply to the o�-line setting, we also
present several results for the on-line setting.
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